湊字數2(1 / 3)

編輯本段基因變異

笑臉蜘蛛乃基因變異所致

基因變異是指基因組DNA分子發生的突然的可遺傳的變異。從分子水平上看,基因變異是指基因在結構上發生堿基對組成或排列順序的改變。基因雖然十分穩定,能在細胞分裂時精確地複製自己,但這種穩定性是相對的。在一定的條件下基因也可以從原來的存在形式突然改變成另一種新的存在形式,就是在一個位點上,突然出現了一個新基因,代替了原有基因,這個基因叫做變異基因。於是後代的表現中也就突然地出現祖先從未有的新性狀。例如英國女王維多利亞家族在她以前沒有發現過血友病的病人,但是她的一個兒子患了血友病,成了她家族中第一個患血友病的成員。後來,又在她的外孫中出現了幾個血友病病人。很顯然,在她的父親或母親中產生了一個血友病基因的突變。這個突變基因傳給了她,而她是雜合子,所以表現型仍是正常的,但卻通過她傳給了她的兒子。基因變異的後果除如上所述形成致病基因引起遺傳病外,還可造成死胎、自然流產和出生後天折等,稱為致死性突變;當然也可能對人體並無影響,僅僅造成正常人體間的遺傳學差異;甚至可能給個體的生存帶來一定的好處。

編輯本段基因破譯

目前,由多國科學家參與的“人類基因組計劃”,正力圖在21世紀初繪製出完整的人類染色體排列圖。眾所周知,染色體是DNA的載體,基因是DNA上有遺傳效應的片段,構成DNA的基本單位是四種堿基。由於每個人擁有30億對堿基,破譯所有DNA的堿基排列順序無疑是一項巨型工程。與傳統基因序列測定技術相比,基因芯片破譯人類基因組和檢測基因突變的速度要快數千倍。基因芯片的檢測速度之所以這麼快,主要是因為基因芯片上有成千上萬個微凝膠,可進行並行檢測;同時,由於微凝膠是三維立體的,它相當於提供了一個三維檢測平台,能固定住蛋白質和DNA並進行分析。美國正在對基因芯片進行研究,已開發出能快速解讀基因密碼的“基因芯片”,使解讀人類基因的速度比目前高1000倍。

編輯本段基因診斷

通過使用基因芯片分析人類基因組,可找出致病的遺傳基因。癌症、糖尿病等,都是遺傳基因缺陷引起的疾病。醫學和生物學研究人員將能在數秒鍾內鑒定出最終會導致癌症等的突變基因。借助一小滴測試液,醫生們能預測藥物對病人的功效,可診斷出藥物在治療過程中的不良反應,還能當場鑒別出病人受到了何種細菌、病毒或其他微生物的感染。利用基因芯片分析遺傳基因,將使10年後對糖尿病的確診率達到50%以上。未來人們在體檢時,由搭載基因芯片的診斷機器人對受檢者取血,轉瞬間體檢結果便可以顯示在計算機屏幕上。利用基因診斷,醫療將從千篇一律的“大眾醫療”的時代,進步到依據個人遺傳基因而異的“定製醫療”的時代。

編輯本段基因重組

《基因樣本》

[3]基因重組是由於不同DNA鏈的斷裂和連接而產生DNA片段的交換和重新組合,形成新DNA分子的過程。1974年波蘭斯吉巴爾斯基(WaclawSzybalski)稱基因重組為合成生物學,1978年他在《基因》期刊中寫道:限製酶將帶領我們進入合成生物學的新時代。

編輯本段基因療法

基因療法是基於對遺傳物質即核酸的應用。廣義而言,人為地有目的地對人體DNA或RNA進行處理。實際應用上,目前主要在於三個方麵。一是跟蹤體內細胞,二是治療疾病,三是預防疾病。

編輯本段基因突變

基因突變(genemutation)一個基因內部可以遺傳的結構的改變。又稱為點突變,通常可引起一定的表型變化。廣義的突變包括染色體畸變。狹義的突變專指點突變。實際上畸變和點突變的界限並不明確,特別是微細的畸變更是如此。野生型基因通過突變成為突變型基因。突變型一詞既指突變基因,也指具有這一突變基因的個體。【基因調控】Regulationofgeneexpression生物體內控製基因表達的機製。基因表達的主要過程是基因的轉錄和信使核糖核酸(mRNA)的翻譯。基因調控主要發生在3個水平上,即①DNA水平上的調控、轉錄控製和翻譯控製;②微生物通過基因調控可以改變代謝方式以適應環境的變化,這類基因調控一般是短暫的和可逆的;③多細胞生物的基因調控是細胞分化、形態發生和個體發育的基礎,這類調控一般是長期的,而且往往是不可逆的。基因調控的研究有廣泛的生物學意義,是發生遺傳學和分子遺傳學的重要研究領域。

編輯本段基因環保

基因芯片在環保方麵也大有可為。基因芯片可高效地探測到由微生物或有機物引起的汙染,還能幫助研究人員找到並合成具有解毒和消化汙染物功能的天然酶基因。這種對環境友好的基因一旦被發現,研究人員將把它們轉入普通的細菌中,然後用這種轉基因細菌清理被汙染的河流或土壤。

編輯本段基因武器

基因武器(geneticweapon),也稱遺傳工程武器或DNA武器。它運用先進的遺傳工程這一新技術,用類似工程設計的辦法,按人們的需要通過基因重組,在一些致病細菌或病毒中接入能對抗普通疫苗或藥物的基因,或者在一些本來不會致病的微生物體內接入致病基因而製造成生物武器。它能改變非致病微生物的遺傳物質,使其產生具有顯著抗藥性的致病菌,利用人種生化特征上的差異,使這種致病菌隻對特定遺傳特征的人們產生致病作用,從而有選擇地消滅敵方有生力量。

編輯本段基因計算

DNA分子類似“計算機磁盤”,擁有信息的保存、複製、改寫等功能。將螺旋狀的DNA的分子拉直,其長度將超過人的身高,但若把它折疊起來,又可以縮小為直徑隻有幾微米的小球。因此,DNA分子被視為超高密度、大容量的分子存儲器。基因芯片經過改進,利用不同生物狀態表達不同的數字後還可用於製造生物計算機。基於基因芯片和基因算法,未來的生物信息學領域,將有望出現能與當今的計算機業硬件巨頭――英特爾公司、軟件巨頭――微軟公司相匹敵的生物信息企業。基因識別和親子鑒定由於人類基因具有唯一性(雙胞胎除外),目前法醫學上用途最廣的方麵就是個體識別和親子鑒定。在法醫學上,STR位點和單核苷酸(SNP)位點檢測分別是第二代、第三代DNA分析技術的核心,是繼RFLPs(限製性片段長度多態性)VNTRs(可變數量串聯重複序列多態性)研究而發展起來的檢測技術。作為最前沿的刑事生物技術,DNA分析為法醫物證檢驗提供了科學、可靠和快捷的手段,使物證鑒定從個體排除過渡到了可以作同一認定的水平,DNA檢驗能直接認定犯罪、為凶殺案、強奸殺人案、碎屍案、強奸致孕案等重大疑難案件的偵破提供準確可靠的依據。隨著DNA技術的發展和應用,DNA標誌係統的檢測將成為破案的重要手段和途徑。此方法作為親子鑒定已經是非常成熟的,也是國際上公認的最好的一種方法。

編輯本段基因檢測

基因檢測是通過血液、其他體液、或細胞對DNA進行檢測的技術。基因檢測可以診斷疾病,也可以用於疾病風險的預測。疾病診斷是用基因檢測技術檢測引起遺傳性疾病的突變基因。目前應用最廣泛的基因檢測是新生兒遺傳性疾病的檢測、遺傳疾病的診斷和某些常見病的輔助診斷。目前有1000多種遺傳性疾病可以通過基因檢測技術做出診斷。

編輯本段基因影響大腦結構和智力

加州大學洛杉磯分校的大腦圖譜研究人員首次創造出顯示個體基因如何影響他們的大腦結構和智力水平的圖像。這項發現發表於2001年11月5日的《自然神經科學》(NatureNeuroscience)雜誌上,為父母如何向後代傳遞個性特征和認知能力以及大腦疾病如何影響整個家族提供了令人興奮的新見解。研究小組發現大腦前沿部分灰質的數量是由個體父母的遺傳組成決定的,根據智力測驗的分數的衡量,它與個體的認知能力有著極大的關聯。更為重要的是,這些是第一批揭開正常的遺傳差異是如何影響大腦結構和智力的圖像。大腦控製語言和閱讀技巧的區域在同卵雙生的雙胞胎中本質上是一樣的,因為他們享有完全一樣的基因,而普通的兄弟姐妹隻顯示60%的正常的大腦差異。家庭成員大腦中的這種緊密的結構相似性有助於解釋大腦疾病包括精神分裂症和一些類型的癡呆症等為什麼會在家庭中蔓延。家庭成員的大腦語言區也同樣極其相似。家庭成員最為相似的大腦區域可能特別易受家族遺傳病攻擊,包括各種形式的精神分裂症和癡呆症等在內。科學家使用核磁共振成像技術來掃描一組20對基因完全相同的同卵雙生的雙胞胎,和20對一半基因相同的異卵雙生的同性雙胞胎。通過高速的超型計算機,他們創造出用不同色彩做標記的圖像,圖像可以顯示大腦的哪些部位是由我們的遺傳組成決定的,哪些部位更易受環境因素如學習和壓力等的影響。為繪製出遺傳對大腦影響的圖譜,加州大學洛山磯分校的科學家們與芬蘭國家公共衛生研究院和芬蘭赫爾辛基大學合作,在一項國家計劃中,芬蘭研究人員跟蹤了芬蘭從1940到1957年間所有的同性雙胞胎--共9500對,他們中有許多接受了大腦掃描和認知能力測試。通過分析78個不同的遺傳標記,他們的遺傳相似性被進一步證實。這些個體的DNA在同卵雙生的雙胞胎中完全吻合,異卵雙生的雙胞胎中一半吻合。最近的研究令人驚訝地顯示許多認知技能是可遺傳的,遺傳對口頭表達能力和空間感、反應時期、甚至一些個性特質如對壓力的情緒反應等都有極大的影響。甚至在根據共同家庭環境對統計數據進行修正之後——通常這種共同環境趨向於使同一家庭成員更為相似——遺傳關聯依然存在。在這項研究以前,人們對個體基因型對個體大腦間廣泛變異以及個體的認知能力有多大影響知之甚少。【基因工程(DNA重組技術)都有那些應用呢】一:在生產領域人們可以利用基因技術,生產轉基因食品.例如,科學家可以把某種肉豬體內控製肉的生長的基因植入雞體內,從而讓雞也獲得快速增肥的能力.但是,轉基因因為有高科技含量,怕吃了轉基因食品中的外源基因後會改變人的遺傳性狀,比如吃了轉基因豬肉會變得好動,喝了轉基因牛奶後易患戀乳症等等。華中農業大學的張啟發院士認為:“轉基因技術為作物改良提供了新手段,同時也帶來了潛在的風險。基因技術本身能夠進行精確的分析和評估,從而有效地規避風險。對轉基因技術的風險評估應以傳統技術為參照。科學規範的管理可為轉基因技術的利用提供安全保障。生命科學基礎知識的科普和公眾教育十分重要。”二:軍事上的應用生物武器已經使用了很長的時間.細菌,毒氣都令人為之色變.但是,現在傳說中的基因武器卻更加令人膽寒。三:環境保護上,也可以應用基因武器。我們可以針對一些破壞生態平衡的動植物,研製出專門的基因藥物,既能高效的殺死它們,又不會對其他生物造成影響,還能節省成本。例如一直危害我國淡水區域的水葫蘆,如果有一種基因產品能夠高效殺滅的話,那每年就可以節省幾十億了。科學是一把雙刃劍,基因工程也不例外。我們要發揮基因工程中能造福人類的部分,抑止它的害處。四,醫療方麵隨著人類對基因研究的不斷深入,發現許多疾病是由於基因結構與功能發生改變所引起的。科學家將不僅能發現有缺陷的基因,而且還能掌握如何進行對基因診斷、修複、治療和預防,這是生物技術發展的前沿。這項成果將給人類的健康和生活帶來不可估量的利益。所謂基因治療是指用基因工程的技術方法,將正常的基因轉如病患者的細胞中,以取代病變基因,從而表達所缺乏的產物,或者通過關閉或降低異常表達的基因等途徑,達到治療某些遺傳病的目的。目前,已發現的遺傳病有6500多種,其中由單基因缺陷引起的就有約3000多種。因此,遺傳病是基因治療的主要對象。第一例基因治療是美國在1990年進行的。當時,兩個4歲和9歲的小女孩由於體內腺苷脫氨酶缺乏而患了嚴重的聯合免疫缺陷症。科學家對她們進行了基因治療並取得了成功。這一開創性的工作標誌著基因治療已經從實驗研究過渡到臨床實驗。1991年,我國首例B型血友病的基因治療臨床實驗也獲得了成功。基因治療的最新進展是即將用基因槍技術於基因治療。其方法是將特定的DNA用改進的基因槍技術導入小鼠的肌肉、肝髒、脾、腸道和皮膚獲得成功的表達。這一成功預示著人們未來可能利用基因槍傳送藥物到人體內的特定部位,以取代傳統的接種疫苗,並用基因槍技術來治療遺傳病。目前,科學家們正在研究的是胎兒基因療法。如果現在的實驗療效得到進一步確證的話,就有可能將胎兒基因療法擴大到其它遺傳病,以防止出生患遺傳病症的新生兒,從而從根本上提高後代的健康水平。五,基因工程藥物研究基因工程藥物,是重組DNA的表達產物。廣義的說,凡是在藥物生產過程中涉及用基因工程的,都可以成為基因工程藥物。在這方麵的研究具有十分誘人的前景。基因工程藥物研究的開發重點是從蛋白質類藥物,如胰島素、人生長激素、促紅細胞生成素等的分子蛋白質,轉移到尋找較小分子蛋白質藥物。這是因為蛋白質的分子一般都比較大,不容易穿過細胞膜,因而影響其藥理作用的發揮,而小分子藥物在這方麵就具有明顯的優越性。另一方麵對疾病的治療思路也開闊了,從單純的用藥發展到用基因工程技術或基因本身作為治療手段。現在,還有一個需要引起大家注意的問題,就是許多過去被征服的傳染病,由於細菌產生了耐藥性,又卷土重來。其中最值得引起注意的是結核病。據世界衛生組織報道,現已出現全球肺結核病危機。本來即將被消滅的結核病又死灰複燃,而且出現了多種耐藥結核病。據統計,全世界現有17.22億人感染了結核病菌,每年有900萬新結核病人,約300萬人死於結核病,相當於每10秒鍾就有一人死於結核病。科學家還指出,在今後的一段時間裏,會有數以百計的感染細菌性疾病的人將無藥可治,同時病毒性疾病日益曾多,防不勝防。不過與此同時,科學家們也探索了對付的辦法,他們在人體、昆蟲和植物種子中找到一些小分子的抗微生物多肽,它們的分子量小於4000,僅有30多個氨基酸,具有強烈的廣普殺傷病原微生物的活力,對細菌、病菌、真菌等病原微生物能產生較強的殺傷作用,有可能成為新一代的“超級抗生素”。除了用它來開發新的抗生素外,這類小分子多肽還可以在農業上用於培育抗病作物的新品種。六,加快農作物新品種的培育科學家們在利用基因工程技術改良農作物方麵已取得重大進展,一場新的綠色革命近在眼前。這場新的綠色革命的一個顯著特點就是生物技術、農業、食品和醫藥行業將融合到一起。本世紀五、六十年代,由於雜交品種推廣、化肥使用量增加以及灌溉麵積的擴大,農作物產量成倍提高,這就是大家所說的“綠色革命”。但一些研究人員認為,這些方法目前已很難再使農作物產量有進一步的大幅度提高。基因技術的突破使科學家們得以用傳統育種專家難以想象的方式改良農作物。例如,基因技術可以使農作物自己釋放出殺蟲劑,可以使農作物種植在旱地或鹽堿地上,或者生產出營養更豐富的食品。科學家們還在開發可以生產出能夠防病的疫苗和食品的農作物。基因技術也使開發農作物新品種的時間大為縮短。利用傳統的育種方法,需要七、八年時間才能培育出一個新的植物品種,基因工程技術使研究人員可以將任何一種基因注入到一種植物中,從而培育出一種全新的農作物品種,時間則縮短一半。雖然第一批基因工程農作物品種5年前才開始上市,但今年美國種植的玉米、大豆和棉花中的一半將使用利用基因工程培育的種子。據估計,今後5年內,美國基因工程農產品和食品的市場規模將從今年的40億美元擴大到200億美元,20年後達到750億美元。有的專家預計,“到下世紀初,很可能美國的每一種食品中都含有一點基因工程的成分。”盡管還有不少人、特別是歐洲國家消費者對轉基因農產品心存疑慮,但是專家們指出,利用基因工程改良農作物已勢在必行。這首先是由於全球人口的壓力不斷增加。專家們估計,今後40年內,全球的人口將比目前增加一半,為此,糧食產量需增加75%。另外,人口的老齡化對醫療係統的壓力不斷增加,開發可以增強人體健康的食品十分必要。加快農作物新品種的培育也是第三世界發展中國家發展生物技術的一個共同目標,我國的農業生物技術的研究與應用已經廣泛開展,並已取得顯著效益。七,分子進化工程的研究分子進化工程是繼蛋白質工程之後的第三代基因工程。它通過在試管裏對以核酸為主的多分子體係施以選擇的壓力,模擬自然中生物進化曆程,以達到創造新基因、新蛋白質的目的。這需要三個步驟,即擴增、突變、和選擇。擴增是使所提取的遺傳信息DNA片段分子獲得大量的拷貝;突變是在基因水平上施加壓力,使DNA片段上的堿基發生變異,這種變異為選擇和進化提供原料;選擇是在表型水平上通過適者生存,不適者淘汰的方式固定變異。這三個過程緊密相連缺一不可。現在,科學家已應用此方法,通過試管裏的定向進化,獲得了能抑製凝血酶活性的DNA分子,這類DNA具有抗凝血作用,它有可能代替溶解血栓的蛋白質藥物,來治療心肌梗塞、腦血栓等疾病。