黑洞是科學史上極為罕見的情形之一,在沒有任何觀測到的證據證明其理論是正確的情形下,作為數學的模型被發展到非常詳盡的地步。的確,這經常是反對黑洞的主要論據:你怎麼能相信一個其依據隻是基於令人懷疑的廣義相對論的計算的對象呢?然而,1963年,加利福尼亞的帕羅瑪天文台的天文學家馬丁?施密特測量了在稱為3C273(即是劍橋射電源編目第三類的273號)射電源方向的一個黯淡的類星體的紅移。他發現引力場不可能引起這麼大的紅移——如果它是引力紅移,這類星體必須具有如此大的質量,並離我們如此之近,以至於會幹擾太陽係中的行星軌道。這暗示此紅移是由宇宙的膨脹引起的,進而表明此物體離我們非常遠。由於在這麼遠的距離還能被觀察到,它必須非常亮,也就是必須輻射出大量的能量。人們會想到,產生這麼大量能量的唯一機製看來不僅僅是一個恒星,而是一個星係的整個中心區域的引力坍縮。人們還發現了許多其他類星體,它們都有很大的紅移。但是它們都離開我們太遠了,所以對之進行觀察太困難,以至於不能給黑洞提供結論性的證據。

1967年,劍橋的一位研究生約瑟琳?貝爾發現了天空發射出無線電波的規則脈衝的物體,這對黑洞的存在的預言帶來了進一步的鼓舞。起初貝爾和她的導師安東尼?赫維許以為,他們可能和我們星係中的外星文明進行了接觸!我的確記得在宣布他們發現的討論會上,他們將這四個最早發現的源稱為LGM1-4,LGM表示“小綠人”(“LittleGreenMan”)的意思。然而,最終他們和所有其他人都得到了不太浪漫的結論,這些被稱為脈衝星的物體,事實上是旋轉的中子星,這些中子星由於它們的磁場和周圍物質複雜的相互作用,而發出無線電波的脈衝。這對於寫空間探險的作者而言是個壞消息,但對於我們這些當時相信黑洞的少數人來說,是非常大的希望——這是第一個中子星存在的證據。中子星的半徑大約10英哩,隻是恒星變成黑洞的臨界半徑的幾倍。如果一顆恒星能坍縮到這麼小的尺度,預料其他恒星會坍縮到更小的尺度而成為黑洞,就是理所當然的了。

按照黑洞定義,它不能發出光,我們何以希望能檢測到它呢?這有點像在煤庫裏找黑貓。慶幸的是,有一種辦法。正如約翰?米歇爾在他1783年的先驅性論文中指出的,黑洞仍然將它的引力作用到它周圍的物體上。天文學家觀測了許多係統,在這些係統中,兩顆恒星由於相互之間的引力吸引而互相圍繞著運動。他們還看到了,其中隻有一顆可見的恒星繞著另一顆看不見的伴星運動的係統。人們當然不能立即得出結論說,這伴星即為黑洞——它可能僅僅是一顆太暗以至於看不見的恒星而已。然而,有些這種係統,例如叫做天鵝X-1(圖6.2)的,也剛好是一個強的X射線源。對這現象的最好解釋是,物質從可見星的表麵被吹起來,當它落向不可見的伴星之時,發展成螺旋狀的軌道(這和水從浴缸流出很相似),並且變得非常熱而發出X射線(圖6.3)。為了使這機製起作用,不可見物體必須非常小,像白矮星、中子星或黑洞那樣。從觀察那顆可見星的軌道,人們可推算出不可見物體的最小的可能質量。在天鵝X-1的情形,不可見星大約是太陽質量的6倍。按照強德拉塞卡的結果,它的質量太大了,既不可能是白矮星,也不可能是中子星。所以看來它隻能是一個黑洞。

圖6.2在靠近照片中心的兩個恒星之中更亮的那顆是天鵝X-1,被認為是由互相繞著旋轉的一個黑洞和一個正常恒星組成。

圖6.3還有其他不用黑洞來解釋天鵝X-1的模型,但所有這些都相當牽強附會。黑洞看來是對這一觀測的僅有的真正自然的解釋。盡管如此,我和加州理工學院的基帕?索恩打賭說,天鵝X-1不包含一個黑洞!這對我而言是一個保險的形式。我對黑洞作了許多研究,如果發現黑洞不存在,則這一切都成為徒勞。但在這種情形下,我將得到贏得打賭的安慰,他要給我4年的雜誌《私人眼睛》。如果黑洞確實存在,基帕?索思將得到1年的《閣樓》。我們在1975年打賭時,大家80%斷定,天鵝座是一黑洞。迄今,我可以講大約95%是肯定的,但輸贏最終尚未見分曉。

現在,在我們的星係中和鄰近兩個名叫麥哲倫星雲的星係中,還有幾個類似天鵝X-1的黑洞的證據。然而,幾乎可以肯定,黑洞的數量比這多得太多了!在宇宙的漫長曆史中,很多恒星應該已經燒盡了它們的核燃料並坍縮了。黑洞的數目甚至比可見恒星的數目要大得相當多。單就我們的星係中,大約總共有1千億顆可見恒星。這樣巨大數量的黑洞的額外引力就能解釋為何目前我們星係具有如此的轉動速率,單是可見恒星的質量是不足夠的。我們還有某些證據說明,在我們星係的中心有大得多的黑洞,其質量大約是太陽的10萬倍。星係中的恒星若十分靠近這個黑洞時,作用在它的近端和遠端上的引力之差或潮汐力會將其撕開,它們的遺骸以及其他恒星所拋出的氣體將落到黑洞上去。正如同在天鵝X-1情形那樣,氣體將以螺旋形軌道向裏運動並被加熱,雖然不如天鵝X-1那種程度會熱到發出X射線,但是它可以用來說明星係中心觀測到的非常緊致的射電和紅外線源。

人們認為,在類星體的中心是類似的、但質量更大的黑洞,其質量大約為太陽的1億倍。落入此超重的黑洞的物質能提供僅有的足夠強大的能源,用以解釋這些物體釋放出的巨大能量。當物質旋入黑洞,它將使黑洞往同一方向旋轉,使黑洞產生一類似地球上的一個磁場。落入的物質會在黑洞附近產生能量非常高的粒子。該磁場是如此之強,以至於將這些粒子聚焦成沿著黑洞旋轉軸,也即它的北極和南極方向往外噴射的射流。在許多星係和類星體中確實觀察到這類射流。

人們還可以考慮存在質量比太陽小很多的黑洞的可能性。因為它們的質量比強德拉塞卡極限低,所以不能由引力坍縮產生:這樣小質量的恒星,甚至在耗盡了自己的核燃料之後,還能支持自己對抗引力。隻有當物質由非常巨大的壓力壓縮成極端緊密的狀態時,這小質量的黑洞才得以形成。一個巨大的**可提供這樣的條件:物理學家約翰?惠勒曾經算過,如果將世界海洋裏所有的重水製成一個**,則它可以將中心的物質壓縮到產生一個黑洞。(當然,那時沒有一個人可能留下來去對它進行觀察!)更現實的可能性是,在極早期的宇宙的高溫和高壓條件下會產生這樣小質量的黑洞。因為一個比平均值更緊密的小區域,才能以這樣的方式被壓縮形成一個黑洞。所以當早期宇宙不是完全光滑的和均勻的情形,這才有可能。但是我們知道,早期宇宙必須存在一些無規性,否則現在宇宙中的物質分布仍然會是完全均勻的,而不能結塊形成恒星和星係。

很清楚,導致形成恒星和星係的無規性是否導致形成相當數目的“太初”黑洞,這要依賴於早期宇宙的條件的細節。所以如果我們能夠確定現在有多少太初黑洞,我們就能對宇宙的極早期階段了解很多。質量大於10億噸(一座大山的質量)的太初黑洞,可由它對其他可見物質或宇宙膨脹的影響被探測到。然而,正如我們需要在下一章看到的,黑洞根本不是真正黑的,它們像一個熱體一樣發光,它們越小則發熱發光得越厲害。

所以看起來荒謬,而事實上卻是,小的黑洞也許可以比大的黑洞更容易地被探測到。