1852年拿破侖第三發動政變,法國從共和國變成了帝國,恢複了公職人員對新政權的效忠宣誓,柯西立即向巴黎大學辭職。後來拿破侖第三特準免除他和物理學家阿拉果的忠誠宣誓。於是柯西得以繼續進行所擔任的教學工作,直到1857年他在巴黎近郊逝世時為止。柯西直到逝世前仍不斷參加學術活動,不斷發表科學論文。
柯西是一位多產的數學家,他的全集從1882年開始出版到1974年才出齊最後一卷,總計28卷。他的主要貢獻如下;
(一)單複變函數
柯西最重要和最有首創性的工作是關於單複變函數論的。18世紀的數學家們采用過上、下限是虛數的定積分。但沒有給出明確的定義。柯西首先闡明了有關概念,並且用這種積分來研究多種多樣的問題,如實定積分的計算,級數與無窮乘積的展開,用含參變量的積分表示微分方程的解等等。
(二)分析基礎
柯西在綜合工科學校所授分析課程及有關教材給數學界造成了極大的影響。自從牛頓和萊布尼茨發明微積分(即無窮小分析,簡稱分析)以來,這門學科的理論基礎是模糊的。為了進一步發展,必須建立嚴格的理論。柯西為此首先成功地建立了極限論。
在柯西的著作中,沒有通行的語言,他的說法看來也不夠確切,從而有時也有錯誤,例如由於沒有建立一致連續和一致收斂概念而產生的錯誤。可是關於微積分的原理,他的概念主要是正確的,其清晰程度是前所未有的。例如他關於連續函數及其積分的定義是確切的,他首先準確地證明了泰勒公式,他給出了級數收斂的定義和一些判別法。
(三)常微分方程
柯西在分析方麵最深刻的貢獻在常微分方程領域。他首先證明了方程解的存在和唯一性。在他以前,沒有人提出過這種問題。通常認為是柯西提出的三種主要方法,即柯西—利普希茨法,逐漸逼近法和強級數法,實際上以前也散見到用於解的近似計算和估計。柯西的最大貢獻就是看到通過計算強級數,可以證明逼近步驟收斂,其極限就是方程的所求解。
(四)其他貢獻
雖然柯西主要研究分析,但在數學中各領域都有貢獻。關於用到數學的其他學科,他在天文和光學方麵的成果是次要的,可是他卻是數理彈性理論的奠基人之一。除以上所述外,他在數學中其他貢獻如下:
1.分析方麵:在一階偏微分方程論中行進丁特征線的基本概念;認識到傅立葉變換在解微分方程中的作用等等。
2.幾何方麵:開創了積分幾何,得到了把平麵凸曲線的長用它在平麵直線上一些正交投影表示出來的公式。
3.代數方麵:首先證明了階數超過了的矩陣有特征值;與比內同時發現兩行列式相乘的公式,首先明確提出置換群概念,並得到群論中的一些非平凡的結果;獨立發現了所謂“代數要領”,即格拉斯曼的外代數原理。
23羅巴切夫斯基創立非歐幾何
尼古拉斯·伊萬諾維奇·羅巴切夫斯基(1792年12月1日~1856年2月24日),俄羅斯數學家,非歐幾何的早期發現人之一。1856年12月24日卒於喀山。1807年入喀山大學學習,1811年獲博士學位並留校工作。1816年任副教授,1822年任教授。還曾任物理數學係主任、圖書館館長和喀山大學校長等職。
1893年,在喀山大學樹立起了世界上第一個為數學家雕塑的塑像。這位數學家就是俄國的偉大學者、非歐幾何的重要創始人——羅巴切夫期基。
非歐幾何學的重大意義
非歐幾何是人類認識史上一個富有創造性的偉大成果,它的創立,不僅帶來了近百年來數學的巨大進步,而且對現代物理學、天文學以及人類時空觀念的變革都產生了深遠的影響。
不過,這一重要的數學發現在羅巴切夫斯基提出後相當長的一段時間內,不但沒能贏得社會的承認和讚美,反而遭到種種歪曲、非難和攻擊,使非歐幾何這一新理論遲遲得不到學術界的公認。
羅巴切夫斯基是在嚐試解決歐氏第五公設問題的過程中,從失敗走上他的發現之路的。歐氏第五公設問題是數學史上最古老的著名難題之一,它是由古希臘學者最先提出來的。
公元前三世紀,希臘亞曆山大裏亞學派的創始者歐幾裏得集前人幾何研究之大成,編寫了數學發展史上具有極其深遠影響的數學巨著《幾何原本》。
這部著作的重要意義在於,它是用公理法建立科學理論體係的最早典範。在這部著作中,歐幾裏得為推演出幾何學的所有命題,一開頭就給出了五個公理(適用於所有科學)和五個公設(隻應用於幾何學),作為邏輯推演的前提。《幾何原本》的注釋者和評述者們對五個公理和前四個公設都是很滿意,唯獨對第五個公設(即平行公理)提出了質疑。
第五公設是論及平行線的,它說的是:如果一直線和兩直線相交,且所構成的兩個同側內角之和小於兩直角,那麼,把這兩直線延長,它們一定在那兩內角的一側相交。數學家們並不懷疑這個命題的真實性,而是認為它無論在語句的長度,還是在內容上都不大像是個公設,而倒像是個可以證明的定理,隻是由於歐幾裏得沒能找到它的證明,才不得不把它放在公設之列。
為了給出第五公設的證明,完成歐幾裏得沒能完成的工作,自公元前3世紀起到19世紀初,數學家們投入了無窮無盡的精力,他們幾乎嚐試了各種可能的方法,但都遭到了失敗。
羅巴切夫斯基是從1815年著手研究平行線理論的。開始他也是循著前人的思路,試圖給出第五公設的證明。在保存下來的他的學生聽課筆記中,就記有他在1816~1817學年度在幾何教學中給出的一些證明。可是,很快他便意識到自己的證明是錯誤的。
前人和自己的失敗從反麵啟迪了他,使他大膽思索問題的相反提法:可能根本就不存在第五公設的證明。於是,他便調轉思路,著手尋求第五公設不可證的解答。這是一個全新的,也是與傳統思路完全相反的探索途徑。羅巴切夫斯基正是沿著這個途徑,在試證第五公設不可證的過程中發現了一個嶄新的幾何世界。
那麼,羅巴切夫斯基是怎樣證得第五公設不可證的呢?又是怎樣從中發現新幾何世界的呢?原來他創造性地運用了處理複雜數學問題常用的一種邏輯方法——反證法。
這種反證法的基本思想是,為證“第五公設不可證”,首先對第五公設加以否定,然後用這個否定命題和其它公理公設組成新的公理係統,並由此展開邏輯推演。
首先假設第五公設是可證的,即第五公設可由其它公理公設推演出來。那麼,在新公理係統的推演過程中一定會出現邏輯矛盾,至少第五公設和它的否定命題就是一對邏輯矛盾;反之,如果推演不出矛盾,就反駁了“第五公設可證”這一假設,從而也就間接證得“第五公設不可證”。
依照這個邏輯思路,羅巴切夫斯基對第五公設的等價命題——普列菲爾公理“過平麵上直線外一點,隻能引一條直線與已知直線不相交”作以否定,得到否定命題“過平麵上直線外一點,至少可引兩條直線與已知直線不相交”,並用這個否定命題和其它公理公設組成新的公理係統展開邏輯推演。
在推演過程中,他得到一連串古怪、非常不合乎常理的命題。但是,經過仔細審查,卻沒有發現它們之間存在任何羅輯矛盾。於是,遠見卓識的羅巴切夫斯基大膽斷言,這個“在結果中並不存在任何矛盾”的新公理係統可構成一種新的幾何,它的邏輯完整性和嚴密性可以和歐幾裏得幾何相媲美。而這個無矛盾的新幾何的存在,就是對第五公設可證性的反駁,也就是對第五公設不可證性的邏輯證明。由於尚未找到新幾何在現實界的原型和類比物,羅巴切夫斯基慎重地把這個新幾何稱之為“想象幾何”。
非歐幾何的誕生
1826年2月23日,羅巴切夫斯基於喀山大學物理數學係學術會議上,宣讀了他的第一篇關於非歐幾何的論文:《幾何學原理及平行線定理嚴格證明的摘要》。這篇首創性論文的問世,標誌著非歐幾何的誕生。然而,這一重大成果剛一公諸於世,就遭到正統數學家的冷漠和反對。
參加2月23日學術公議的全是數學造詣較深的專家,其中有著名的數學家、天文學家西蒙諾夫,有後來成為科學院院士的古普費爾,以及後來在數學界頗有聲望的博拉斯曼。在這些人的心目中,羅巴切夫斯基是一位很有才華的青年數學家。
可是,出乎他們的意料,這位年輕的教授在簡短的開場白之後,接著說的全是一些令人莫明其妙的話,諸如三角形的內角和小於兩直角,而且隨著邊長增大而無限變小,直至趨於零;銳角一邊的垂線可以和另一邊不相交,等等。
這些命題不僅離奇古怪,與歐幾裏得幾何相衝突,而且還與人們的日常經驗相背離。然而,報告者卻認真地、充滿信心地指出,它們屬於一種邏輯嚴謹的新幾何,和歐幾裏得幾何有著同等的存在權利。這些古怪的語言,竟然出自一個頭腦清楚、治學嚴謹的數家教授之口,不能不使與會者們感到意外。他們先是表現現一種疑惑和驚呆,不多一會兒,便流露出各種否定的表情。