本文采用了一種改進的模擬電路多目標遺傳算法。通過結合基於方程和基於仿真的優化,加速了Pareto前沿的計算,並給出了一個米勒補償的兩級運放實例,結果表明本文的方法可行且有效。
參考文獻
[1]R.Brayton.A survey of optimization techniques for integrated circuit design[J].Proc.IEEE,1981,69(10):1334-1362.
[2]Deb K.Multi-objective optimization using evolutionary algorithms[M].John Wiley & Sons,2001.
[3]De Smedt B,Gielen G G.WATSON:design space boundary exploration and model generation for analog and RFIC design[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2003,22(2):213-224.
[4]Eeckelaert T,McConaghy T,Gielen G.Efficient multiobjective synthesis of analog circuits using hierarchical pareto-optimal performance hypersurfaces[C]. Proc. Design Automation & Test Europe 2005:1070-1075.
[5]Gielen G,McConaghy T,Eeckelaert T. Performance space modeling for hierarchical synthesis of analog integrated circuits[C]. Proc. Design Automation Conference,2005:881-886.
[6]Deb K,Pratap A,Agarwal S,et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[7]Boyd S P,Lee T H,Others. Optimal design of a CMOS op-amp via geometric programming[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.2001,20(1):1-21.
[8]Mandal P,Visvanathan V. CMOS op-amp sizing using a geometric programming formulation[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.,2001,20(1):22-38.