第十三章
圓周率研究的重大貢獻
祖衝之不但精通天文、曆法,他在數學方麵的貢獻,特別對“圓周率”研究的傑出成就,更是超越前代,在世界數學史上放射著異彩。
我們都知道圓周率就是圓的周長和同一圓的直徑的比,這個比值是一個常數,現在通用希臘字母“π”來表示。圓周率是一個永遠除不盡的無窮小數,它不能用分數、有限小數或循環小數完全準確地表示出來。由於現代數學的進步,已計算出了小數點後兩千多位數字的圓周率。
圓周率的應用很廣泛。尤其是在天文、曆法方麵,凡牽涉到圓的一切問題,都要使用圓周率來推算。我國古代勞動人民在生產實踐中求得的最早的圓周率值是“3”,這當然很不精密,但一直被沿用到西漢。後來,隨著天文、數學等科學的發展,研究圓周率的人越來越多了。西漢末年的劉歆首先拋棄“3”這個不精確的圓周率值,他曾經采用過的圓周率是31547。東漢的張衡也算出圓周率為10=3.1622。這些數值比起π=3當然有了很大的進步,但是還遠遠不夠精密。到了三國末年,數學家劉徽創造了用割圓術來求圓周率的方法,圓周率的研究才獲得了重大的進展。
用割圓術來求圓周率的方法,大致是這樣:先作一個圓,再在圓內作一內接正六邊形。假設這圓的直徑是2,那末半徑就等於1。內接正六邊形的一邊一定等於半徑,所以也等於1;它的周長就等於6。如果把內接正六邊形的周長6當作圓的周長,用直徑2去除,得到周長與直徑的比π=62=3,這就是古代π=3的數值。但是這個數值是不正確的,我們可以清楚地看出內接正六邊形的周長遠遠小於圓周的周長。
如果我們把內接正六邊形的邊數加倍,改為內接正十二邊形,再用適當方法求出它的周長,那麼我們就可以看出,這個周長比內接正六邊形的周長更接近圓的周長,這個內接正十二邊形的麵積也更接近圓麵積。從這裏就可以得到這樣一個結論:圓內所做的內接正多邊形的邊數越多,它各邊相加的總長度(周長)和圓周周長之間的差額就越小。從理論上來講,如果內接正多邊形的邊數增加到無限多時,那時正多邊形的周界就會同圓周密切重合在一起,從此計算出來的內接無限正多邊形的麵積,也就和圓麵積相等了。不過事實上,我們不可能把內接正多邊形的邊數增加到無限多,而使這無限正多邊形的周界同圓周重合。隻能有限度地增加內接正多邊形的邊數,使它的周界和圓周接近重合。所以用增加圓的內接正多邊形邊數的辦法求圓周率,得數永遠稍小於真實數值。劉徽就是根據這個道理,從圓內接正六邊形開始,逐次加倍地增加邊數,一直計算到內接正九十六邊形為止,求得了圓周率是3.141024。把這個數化為分數,就是50157。
劉徽所求得的圓周率,後來被稱為“徽率”。他這種計算方法,實際上已具備了近代數學中的極限概念。這是我國古代關於圓周率的研究的一個光輝成就。
祖衝之在推求圓周率方麵又獲得了超越前人的重大成就。根據《隋書·律曆誌》的記載,祖衝之把一丈化為一億忽,以此為直徑求圓周率。他計算的結果共得到兩個數:一個是盈數(即過剩的近似值),為31415927;一個是月肉數(即不足的近似值),為31415926。圓周率真值正好在盈月肉兩數之間。《隋書》隻有這樣簡單的記載,沒有具體說明他是用什麼方法計算出來的。不過從當時的數學水平來看,除劉徽的割圓術外,還沒有更好的方法。祖衝之很可能就是采用了這種方法。因為采用劉徽的方法,把圓的內接正多邊形的邊數增多到24576邊時,便恰好可以得出祖衝之所求得的結果。
盈月肉兩數可以列成不等式,如:
31415926(月肉)<π(真實的圓周率)<31415927(盈),這表明圓周率應在盈月肉兩數之間。按照當時計算都用分數的習慣,祖衝之還采用了兩個分數值的圓周率。一個是355111(約等於31415927),這一個數比較精密,所以祖衝之稱它為“密率”。另一個是227(約等於314),這一個數比較粗疏,所以祖衝之稱它為“約率”。在歐洲,直到1573年才由德國數學家渥脫求出了355113這個數值。因此,日本數學家三上義夫曾建議把355113這個圓周率數值稱為“祖率”,來紀念這位中國的大數學家。