(3) 政策對生物質能源產業創新能力培育效果有限
中國在生物質發電技術上處於追趕狀態,需加大資金投入,加強生物質發電設備的研發工作,尤其是鍋爐設備的研發,實施進口替代戰略。目前中國鍋爐設備主要靠國外進口,其中鍋爐設備占總投資的25%,而鍋爐這項關鍵設備在中國尚無成熟設備供應商,需要從國外進口,建設成本高,在生物質發電技術上受製於人。鍋爐設備的優劣直接影響生物質電廠的熱效率,進而影響發電效率。生產同等數量的電力,優質的設備可以減少燃料的數量,提高電廠的經濟效益。
近年來,中國非常重視可再生能源領域發展。不斷加強對可再生能源領域投入,相對於歐美國家,中國近年對可再生能源的領域的投入更多。然而,中國生物質能源技術創新仍難以滿足市場需要,發電成本仍無法與傳統能源進行競爭。因此提高研發速度和質量是改善生物質能源發展現狀的關鍵路徑,實施如何更好地激勵微觀主體進行創新研發的政策更是刻不容緩。
9.3.3中國生物質發電支持政策的建議
(1) 建立健全的生物質發電燃料供應體係
大力加強秸稈資源的田間收集和管理,共同采用自動化程度較高的大型秸稈收割機和秸稈采摘捆紮機進行綜合處理,它可以有效提高秸稈資源的收集效率,降低收集成本。在沒有條件的地區,生物質發電公司或生物質燃料收購企業也可以提供秸稈包裝機械,以集中包裝和處置所獲得的秸稈資源。
農民、農民經紀人、農村專業合作組織和生物質發電廠都共同參與燃料收儲過程,各利益相關方簽署秸稈生產和供應合同,既可以確保各方的合法權益,又可以確保生物質燃料銷售市場的各環節透明的信息環境,可以為生物質發電廠提供穩定的燃料來源。此外,生物質發電廠還可以與農民簽訂免費收割合同,秸稈收購價格將單獨協商。儲存中心和場地應具有良好的防火、防雨、防潮和幹燥設施,避免因管理不當造成的浪費和秸稈資源的損失。 此外,生物質燃料儲存中心還可以購買燃料處理設備,並根據生物質發電廠燃料的利用標準進行一定的預處理。
在生物質發電初期實現規模化和工業化的過程中,考慮到生物質燃料采購公司的盈利能力可能較弱,政府可以采取相應的扶持政策。例如,政府可以補貼從農民購買的秸稈數量或對生物質能源收購企業提供適當的稅收減免。這不僅有利於農民銷售秸稈,也為生物質發電廠持續供應燃料提供了有力保障。
(2) 完善產業發展布局,實現上下遊協調發展
資源調查的最終目標是保證生物質發電項目在基於市場的運作下,生物質發電企業能夠以可接受的價格獲得足夠的資源量。因此,需要考慮資源儲備和潛力、農民收入水平、其他用途的資源需求、當地經濟發展、氣候和交通等。目前,我國已經對生物質資源稟賦進行了初步調查,普遍掌握了各種生物質發電所需資源的可用儲量和開發潛力,但是,尚未製定資源分配和利用的細節。開發不同生物質發電的潛在水平,並在最合適的區域應用最合適的技術形式還需進一步發展探索。
中國生物質發電的技術結構和區域分布結構應在自下而上的資源調查的基礎上進行,應在深入調查的基礎上實現根據其特點發展。此外,我們應該從國際視角指導中國生物質發電產業的布局,應更加突出生物質發電技術的核心作用,強調減排效果以及能源使用方法的安全和可持續性。增加原料供應是解決生物質發電原料成本過高問題,引導生物質發電企業在適宜場所發展的可行思路之一。在主要糧棉生產區發展秸稈直燃發電;促進甘蔗主要種植區和糖加工集中區發展甘蔗直燃發電;在重點林區和林產品加工區,結合林業生態建設,利用林業殘餘和林產品加工殘渣,發展林業生物質直燃發電;在“三北”地區,結合防沙治沙,建設灌木種植基地,發展灌木直接燃燒發電。城市作為非農業產業和非農業人口集聚的較大聚落,能源消耗較大且產生較多可利用的生物質能原材料,因此,應鼓勵中東部地區和人口密集且土地資源緊張的城市建設生活垃圾焚燒發電項目;在西部地區,將引導垃圾填埋沼氣發電項目的開發和建設。無論采用何種方法,都應結合城市生態環境保護,選擇合適的生活垃圾和能源利用方式,實現區域產業與社會經濟的協調發展。
製定產業發展目標,分階段實施發展計劃。產業發展目標的製定是一項複雜的係統工程,它是基於對中國生物質資源總儲量、生物質資源儲量和結構、不同生物質發電技術發展水平和發電經濟性的綜合調查製定的;它是通過與國外發達國家的比較和對國際能源整體發展趨勢的分析和通過科學嚴謹的多學科論證製定出來。總體工業發展目標的製定應符合中國生物質發電產業發展的實際情況,具有一定的強製性和統領作用,可以明確中國生物質發電產業的發展方向和發展目標。工業發展的總目標不僅應該是規模和數量的簡單目標,而且應該是實現目標的手段,即對於不同形式的生物質發電,應製定一係列配套政策措施或機製,以確保工業發展目標的順利實現。工業總發展目標應該是一個完整的係統,通過多種實施方法促進生物質發電產業的發展。
《可再生能源中長期發展規劃》明確指出截至2020年,生物質發電累計裝機容量將分別達到3000萬千瓦,該行業整體規模將分別達到1500億元和 3100 億元。通過與2014年至2020年中國生物質發電和工業發展的預計產能進行比較,可以看出中國生物質發電產業的發展速度正在逐步放緩。政府應該提供指導和支持政策,以確保2020年工業發展目標的順利實現。
電力工業的上下遊依賴性很高,具有與生產和消費同步的特點。在價值鏈的構建中,有必要合理分配上、中、下遊的風險和收益,以實現風險和收益的等價。目前,生物質發電等新能源電力行業的上遊(設備生產)盈餘,中遊(電力生產)效率低下,下遊(電網輸配電)存在問題,這表明行業內的上下遊價值鏈沒有形成協同作用,導致價值鏈出現一定程度的扭曲。因此,有必要進一步理順行業的上、中、下遊之間的關係。產業規劃的製定應考慮上中下遊為一體,有效整合產業資源,政策的製定應考慮到上中下遊的合理布局,實現協調發展。
(3) 加強對生物質能源技術發展的有效激勵
目前,中國缺乏生物質發電領域的專業技術人才,國內大學的相關專業設置不是針對性的。中國可以采用高層次人才引進、外國委托培訓和國際學術交流等形式逐漸縮短我國與國外技術上的差距。加強與國外權威大學和研究機構的交流與合作,在生物質發電領域開展有針對性的研究;並且有針對性地訓練專業技術人員,為中國生物質發電產業的快速持續發展培養和提供強有力的人才支持。
技術開發在整個行業生命周期中發揮著至關重要的作用。在工業生產時期不僅需要投資,而且在不同的工業周期中需要持續投資,高技術新興產業的投資比例往往需要大於一般工業。因此,我們應該增加生物質發電產業在不同發展階段的研發投入。
加強技術引進,創新孵化和人才培養。在工業發展的早期階段,R&D活動主要針對生物質發電技術的突破,包括生物質材料的收集和預處理以及燃燒設備的研究和轉化,這一階段的研發具有種子效應。目前,我國生物質發電的核心設備和技術環節缺乏自主知識產權,許多關鍵設備需要依賴進口,這不可避免地增加了設備的製造成本。政府應建立生物質發電技術實驗室,鼓勵相關研究機構開展有針對性的研究,增加相應學科,引進國際人才,培養當地研究團隊。政府應加大對研發的財政投入,為企業自主創新活動提供減免稅等扶持政策。
鼓勵發電公司在運營過程中不斷技術升級。在工業發展的成長階段,R&D具有增長效應。從生物質發電行業的學習曲線可以看出,R&D投資對於工業活動成本下降是一個長期過程。投資不是立竿見影的,因此需要製定特殊政策來支持和鼓勵企業開展的持續的R&D活動;同時,建議對企業技術升級投資提供一定的稅收減免。
(4) 加強對生物質能源技術發展的有效激勵
生物質能開發和利用的根基在於技術的進步與革新,無論是何種支持政策都應著眼於以技術進步為導向,市場配置為手段的政策體製。中國的生物質發電起步較晚,仍處於工業發展的初級階段。生物質發電的裝機容量在中國的總裝機容量中相對較小,僅占可再生能源裝機容量的0.5%。目前,中國生物質發電產業的發展環境尚不完善,政府需要進一步支持生物質電價。
2006年1月,國家發展和改革委員會發布《可再生能源發電價格與成本分擔管理試行辦法》,當地生物質發電價格由兩部分組成:2005年各省脫硫燃煤機組的上網電價和生物質發電補貼電價。補貼價格自項目啟動之日起補貼15年,補貼價格為0.25元\/千瓦時。由於各省脫硫燃煤機組的上網電價不同,上網電價較低的省份的生物質發電價格也較低。2010年7月和8月,國家發展和改革委員會和國家能源局先後發布了《關於完善農林生物質發電價格政策的通知》和《關於生物質發電項目建設管理的通知》。對生物質發電項目上網價格進一步規定:對於尚未通過招標確定新建的農林生物質發電項目,將統一實施0.75元\/千瓦時的基準上網電價。這大大提高了一些生物質發電廠的效率,但一些發電廠仍處於虧損狀態,還需進一步製定適用的電價標準。中國可以借鑒德國的經驗,根據生物質發電的裝機容量和發電的具體形式製定不同的電價標準。
確定不同形式的生物質發電的財政和稅收優先政策。中國的生物質發電包括混合燃燒發電、直接燃燒發電、廢物發電、沼氣發電和氣化發電五種形式。五種形式發展階段不盡相同,應根據實際情況製定有針對性的財稅政策。財政政策應主要采取直接投資和財政補貼,重點是在產業發展初期支持關鍵設備的技術研發和電價補貼。稅收政策主要是在工業生產條件下實施增值稅和所得稅優惠政策。
增加對金融技術研發資金的投入。目前,中國生物質發電的關鍵核心技術沒有自主知識產權,鍋爐爐排等核心設備和部件主要依靠國外進口,技術是製約我國生物質發電產業發展的主要原因之一。中國生物質發電產業的技術研發能力相對較弱,研究實力主要分散在一些高等院校和科研機構。因此,中國應建立全國統一和創新的技術研發平台,以吸引高等院校、科研機構、民間組織和海外機構參與,不斷投入技術研發,努力提高中國的自主研發能力。
豐富稅收優惠政策。目前,我國生物質發電領域的稅收優惠政策主要針對發電企業,可以進一步考慮采取有效措施,增加對發電企業的稅收優惠。企業運營中使用的生物質發電專用設備,允許從當年的應納稅收中扣除設備價格。此外,參與生物質發電行業投資和消費的個人或家庭可以獲得相應的稅收優惠,例如,生物質發電行業的個人投資者免除部分個人所得稅,或者向使用生物質發電的個人或家庭提供個人所得稅優惠。
附錄
附錄
河北省生物質能發電廠項目
1廣宗縣新能生物質熱電有限公司生物質發電項目
2元氏縣槐陽熱電化工有限責任公司元氏縣生物質發電項目
3承德泰達新能源發電有限公司平泉生物質發電工程
4中國大唐集團新能源股份有限公司大唐南皮1×30兆瓦生物質發電工程
5中電故城縣生物質能發電項目
6河北安仁實業集團有限公司生物質發電改造項目
7石家莊秸電鍋爐工程設備有限公司石家莊市無極縣生物質發電項目
8河北諾亞能源有限公司獻縣生物質發電供熱項目
9文安縣天華密度板有限公司2×6MW生物質發電項目
河南省生物質能發電廠項目
1新密市昌源集團電力有限公司生物質能發電項目2012
2長葛市恒光熱電有限責任公司生物質能發電工程
山西省生物質能發電廠項目
備注:據2008.6.30太原晚報記載山西擬建14家生物質能發電廠
1靜樂縣發電廠2×6MW生物質熱電聯產項目
2定襄縣吉隆能源有限公司定襄縣2×15MW生物質發電項目
3太原水塔綠色能源有限公司2×15MW生物質熱電聯產項目
4山西江河生物質能發電有限公司1×25MW生物質發電項目
遼寧省生物質能發電廠項目
1國能昌圖生物發電有限公司
2黑山縣國能黑山生物發電有限公司
3遼寧台安威華生物發電有限公司2×18MW生物質能發電項目
續表
吉林省生物質能發電廠項目
1益海嘉裏(吉林)3MW生物質能發電項目
2主嶺鬆源生化有限公司木糖醇項目燃燒木糖醇渣等生物質配套熱電站工程
3國能榆樹生物發電工程
4德惠秸稈電廠項目
湖北省生物質能發電廠項目
1國電長源荊州熱電有限公司生物質氣化—再燃發電項目
2安能熱電集團隨州生物質發電工程項目
3來鳳凱迪生物質能發電廠工程(2×12MW)
4天門凱迪生物質能發電廠工程(1×25MW)
5武漢綠科能源有限公司25MW生物質發電改造工程
6赤壁凱迪生物質能發電廠110kV接入工程
7湖北漢新發電有限公司生物質氣化—再燃發電項目
8陽新凱迪生物質能發電廠工程(1×30MW)
9麻城市亞太生物質發電廠工程(2×12MW)
10國電長源荊州熱電有限公司生物質氣化—再燃發電項目
11隨州隨縣生物質發電廠110kV上網線路工程
12安能熱電集團仙桃生物質發電工程項目
13安能熱電集團鍾祥(2×15MW)生物質發電工程項目
14安能熱電集團仙桃(2×15MW)生物質發電工程項目
15安能熱電集團鍾祥(2×15MW)生物質發電工程項目
16安能熱電集團大悟(2×15MW)生物質發電工程項目
17穀城凱迪生物質能發電廠工程(1×30MW)
18安能熱電集團屈家嶺(2×15MW)生物質發電工程項目
19洪湖理昂20MW生物質發電廠項目
20鬆滋凱迪生物質能發電廠工程(1×30MW)
21江陵凱迪生物質能發電廠工程(1×30MW)
22穀城凱迪生物質能發電廠工程(1×25MW)
續表
江蘇省生物質能發電廠項目
1鹽城創能秸稈發電有限公司2×15MW生物質能發電工程
2南通光合生物質能發電有限公司2×15MW秸稈發電項目
3泗洪生物質能發電項目環境影響報告書
4沛縣來發生物質能發電有限公司24MW生物質能發電機組項目
5江蘇正兆生物質能發電盱眙項目
浙江省生物質能發電廠項目
1開化恒瑞電力有限公司開化生物質能發電工程
安徽省生物質能發電廠項目
1霍山凱迪生物質能發電廠工程(1*30MW)
2金寨凱迪生物質能發電廠工程
3五河凱迪生物質能發電廠工程一期工程(2×12MW)
4光大新能源(含山)有限公司生物質能發電工程
5光大新能源(碭山)有限公司生物質能發電項目
6桐城凱迪生物質能發電工程(2×12MW)
7五河凱迪生物質能發電工程(4×12MW)
8望江凱迪生物質能發電工程(4×12MW)
9鳳陽縣神光生物質能發電工程項目
10華電宿州生物質能發電有限公司宿州生物質能發電工程
江西省生物質能發電廠項目
1武漢凱迪能源開發公司鄱陽生物質能電廠
2萬載生物質能發電
3吉安凱迪生物質能發電
4金佳穀物生物質能發電
山東省生物質能發電廠項目
1昌樂盛世熱電有限責任公司焚燒造紙廢渣及汙泥處理生物質能發電項目
2沂水長青生物質能發電廠
3梁山縣生物質能發電項目
續表
山東省生物質能發電廠項目
4魚台長青環保能源有限公司生物質能發電工程
5淄博浩源生物質能熱電有限公司生物質能發電工程
6山東日昇生物質能熱電有限公司生物質能發電工程
7五蓮縣陽光熱電有限公司日照市北經濟開發區生物質能發電項目
8日照君青能源科技材料有限公司生物質能發電示範項目
9高密市周家屯生物質能發電項目
10成武縣生物質能發電項目
11中電環宇(山東)生物質能發電有限公司生物質能發電工程1×15MW
12梁山前能生物質能發電項目
13中電寧津縣生物質能發電項目
14魚台魯裕10MW生物質能發電項目
15彙豐生物質能發電項目
16單縣秸稈生物質能發電項目
黑龍江省生物質能發電廠項目
1黑龍江省萬成熱點長生物質能熱點聯產項目
2農墾金穀生物質發電
3農墾遠達生物質發電
466千伏龍江清河泉米業有限公司吉祥分公司生物質能熱電廠
5嫩江凱迪1×30MW生物質發電新建工程
6牡丹江農墾鑫能熱電有限公司生物質能發電二期工程
7明水生物質電廠送出輸變電工程
8黑龍江省望奎縣的國能望奎生物質能發電項目
參考文獻
參考文獻
陳柳欽.中國生物質發電問題探討[J].水電與新能源,2012(03):16.
曹國良,張小曳,王亞強等.中國區域農田秸稈露天焚燒排放量的估算[J].科學通報,2007,52(15):18261831.
曹念.城市生活垃圾處理設施水平和城市經濟發展的關係研究[D].北京交通大學,2014.
曾紹倫,任玉瓏.可再生能源發電競價上網研究[J].四川理工學院學報(自然科學版),2006,19(5):912.
常世榮.20091121.國內最大的生物質發電廠將在涿鹿並網.河北經濟日報.
陳聰,李薇,李延峰等.生物質發電廠優化選址建模及決策研究[J].農業工程學報,2011,27(1):255230.
陳娟.湖北省農村生物質能源產業布局與發展研究[D].華中農業大學,2012.
陳麗歡,李毅念,丁為民等.基於作業成本法的秸稈直燃發電物流成本分析[J].農業工程學報.2012,28(4):199203.
陳柳欽.中國生物質發電問題探討[J].決策谘詢,2012(05):17.
陳銘,李紅燕,王鐵寧.模糊綜合評判中非線性隸屬函數的確定[J].數學的實踐與認識,2006,36(9):124128.
叢璐,徐有寧,韓作斌.生物質能及應用技術[J].沈陽工程學院學報(自然科學版),2009,5(01):913+23.
戴玉才,楊洪雲,李倩,張文珺.關於可再生能源政策組合的初步分析[J].農業工程技術:新能源產業,2009(4):16.
單鬆,張軍.內蒙古農作物秸稈生物質熱電產業發展優勢探討[J].北方環境,2013,25(01):143146.
丁國新.秦皇島垃圾發電廠經營環境與策略研究[D].華北電力大學,2011.
董愛芹.淺談中國鄉鎮的生物質能發電[J].中外企業家,2011(02):3738.
董暢,張曦.我國可再生能源配額製政策的實施對生物質發電產生的影響[J].能源研究與管理,2015(04):12+9.
董聰,李薇,李延峰等.生物質發電廠規劃選址模型的建立及應用[J].太陽能學報,2012,33(10):17321737.
範麗豔,張瑜.我國生物質發電行業存在的問題及對策[J].華北電力大學學報(社會科學版),2010(01):1113.
馮超,馬曉茜.秸稈直燃發電的生命周期評價[J].太陽能學報,2008,29(6):711715.
高立,梅應丹.我國生物質發電產業的現狀及存在問題[J].生態經濟,2011(08):123127.
葛少英.生物質發電項目的可行性分析[D].華北電力大學(北京),2009.
辜勇,高東旭.重心法在油庫選址問題中的應用[J].物流科技,2007(2):108111.
郭菊娥,薛冬,陳建華,席酉民.秸稈發電項目的政府優惠政策選擇[J].西安交通大學學報(社會科學版),2008,28(2):1418.
郭曉敏.風力、光伏及生物質發電的生命周期CO2排放核算[D].北京:清華大學.2011.
國家發改委,國家電監會.關於2010年1—9月可再生能源電價補貼和配額交易方案的通知.2011.
國家發改委.關於生物質發電項目建設管理的通知.2010.
杭春燕.20070821.國內最大秸稈氣化電廠何以停產?新華日報.
何珍,吳創之,陰秀麗.秸稈生物質發電係統的碳循環分析[J].太陽能學報,2008,29(6):705710.
賀仁飛.中國生物質能的地區分布及開發利用評價[D].蘭州:蘭州大學.2013.
胡婕,賈冰,許雪記.江蘇省生物質發電產業現狀問題及解決對策研究[J].可再生能源,2015,33(2):283288.
胡豔英,王述洋.構建生物質發電項目模糊綜合評價體係的研究[J].農業機械學報,2010,41(9):9095.
賈小黎.丁航.秸稈直接燃燒供熱發電項目上網電價初步測算[J].可再生能源,2006,125(1):5055.
江蘇省能源研究會.江蘇省農作物秸稈發電不同技術路線案例研究與後評估.2009.
鞠新民.特種養殖五注意[J].北京農業,2010(34):50.
來堯靜,沈玥.丹麥低碳發展經驗及其借鑒[J].湖南科技大學學報(社會科學版),2010,13(6):100103.
李攻.201083.生物質發電虧損嚴重,重複建設套取補貼.第一財經日報.
李金穎,田俊麗,張春蓮.基於主成分分析法的生物質發電項目效益評價研究[J].能源技術經濟,2012,24(2):3337.
李景明.淺析我國生物質能政策框架的現狀與發展[J].農業科技管理,2008,27(4):1114.
李梁傑.生物質發電項目可持續性評價研究[D].北京:北京化工大學.2010
李鬆.促進我國新能源發展的財稅政策研究[D].首都經濟貿易大學,2014.
李曉明.200837.九三學社中央建議立足“三農”發展生物質能源:先農業需求,再化石能源替代.科學時報.
李曉明.2010524.一座生物質電廠的賬本:究竟劃算不劃算?科學時報.
李穎,李靜.生物質發電項目碳排放計算方法應用研究[J].能源環境保護,2012,26(1):58.
李誌軍.我國生物質直燃發電的現狀、問題及政策建議[J].技術經濟,2008(09):3437+81.
梁奎.上吸式生物質空氣氣化及焦油低減技術研究[D].哈爾濱工業大學,2008.
梁盛,肖子力.2010327.廣東湛江開建亞洲最大生物質能發電項目.中國新聞網.http:\/\/www.chinanews.com\/ny\/news\/2010\/0327\/2193288.shtml
梁水瑩,李濱,梁克林.廣西非糧生物質發電發展現狀與技術需求[J].廣西電力,2016,39(02):4145.
廖曉東.我國生物質能產業與技術未來發展趨勢與對策研究[J].決策谘詢,2015(01):3742.
林琳,趙黛青,李莉.基於生命周期評價的生物質發電係統環境影響分析[J].太陽能學報,2008,29(5):618623.
林偉剛,宋文立.丹麥生物質發電的現狀和研究發展趨勢[J].燃料化學學報,2005,33(6):650655.
林永明,潘峰,王正峰.生物質發電燃燒方式與爐型選擇[J].廣西電力,2009,(1):58.
劉剛,沈鐳.中國生物質能源的定量評價及其地理分布[J].自然科學學報,2007,22(1):919.
劉鋼,黃明皎.秸稈發電廠燃料收集半徑與裝機規模[J].電力建設,2011,32(03):7275.
劉華東.2010329.鹽城5年內每縣建成秸稈發電廠.鹽城晚報.
劉軍娜,王長瑞,楊琨,張雯,熊健.基於RTDS的同步相量測量裝置動態數模試驗方法研究[J].華北電力技術,2014(09):913.
劉勝強,毛顯強,邢有凱.中國新能源發電生命周期溫室氣體減排潛力比較和分析[J].氣候變化研究進展,2012,8(1):4853.
劉偉軍,雷廷宙,韓剛,白煒.中國生物質發電政策法規分析及發展策略探討[J].太陽能產業論壇,2007,(11):810.
劉誌彬,任愛勝,高春雨,付偉錚,陳晨.中國農業生物質資源發電潛力評估[J].中國農業資源與區劃,2014,35(04):133140.
劉誌彬.中國生物質發電潛力評估與產業發展研究[D].中國農業科學院,2015.
魯曉春,詹荷生.關於配送中心重心法選址的研究[J].北京交通大學學報,2000,24(6):108110.
羅寶華,張彩虹,牛誌蕾.基於ISM的沙區生物質發電產業影響因素分析[J].林業經濟問題,2016,36(02):162168.
羅玉和,丁力行.基於能值理論的生物質發電係統評價[J].中國電機工程學報,2009,29(32):112117.
馬哲,馬中,翟俊,楊斯娟.中國農林生物質發電產業發展區域適宜性分析[J].江蘇農業科學,2014,42(04):290294.
孟尚雄.選址理論體係初探[J].中國流通經濟,2011,(4):9499.
米泉齡,王瑞婷,張雪靜.生物質能的開發與利用[J].林產工業,2010,37(04):5153.
納麗萍,馬航海.我國生物質能源產業的SWOT分析與對策[J].西北民族大學學報(自然科學版),2015,36(01):7175.
倪維鬥.2010627.從秸稈直燃發電談能源係統優化問題.科學時報.
齊天宇,張希良,歐訓民等.我國生物質直燃發電區域成本及發展潛力分析[J].可再生能源,2011,29(2):115124.
石建軍.我國可再生能源探討[J].銅陵學院學報,2006,4(4):3134
石偉楠.農作物秸稈資源綜合利用探析[J].農技服務,2017,34(22):139.
石元春.2010607.當前不宜否定秸稈直燃發電.科學時報.
舒珺.生物質能發電技術應用現狀及發展前景[J].山東工業技術,2017(22):167.
宋開慧,周景月,張培棟,等.中國省域生物質發電潛力評價及規劃目標配額分析[J].中國科技論壇,2016(1):124129.
宋豔萍.生物質發電技術經濟分析[D].鄭州:河南農業大學.2010.
孫鳳蓮,王雅鵬.我國與歐盟發展生物質能的比較與啟示[J].經濟縱橫,2007,5(5):5254.
孫偉.生物質燃料收集方式分析與比較[J].林業科技情報,2009(41):6869.
孫秀紅.2010711.生物質發電企業幾乎全部虧損.經濟導報.
孫宜彬,慶禎.UFLP問題的一種改進鬆弛對偶算法[J].山東師範大學學報,2006,21(3):3235.
譚淩,高峻峻,王迎軍.基於庫存成本優化的配送中心選址問題研究[J].係統工程學報,2004,19(1):5965.
唐朝賢.生物質發電項目投資風險分析與決策研究[D].長沙:中南大學.2011.
汪新民,丁會.生物質發電環境影響評價要點分析[J].綠色科技,2015(2):210211.
王華.20111119.粵電湛江生物質發電項目擁有2台5萬千瓦生物質發電機組.中國新聞網.http:\/\/www.chinanews.com\/df\/2011\/1119\/3471985.shtml.
王俊傑.秸稈發電前景廣闊[J].北京農業,2010(34):50.
王歐.中國生物質能源開發利用現狀及發展政策與未來趨勢[J].中國農村經濟,2007(7):1013.
王書生,趙浩君.可再生能源發展的稅收激勵政策探析[J].華北電力大學學報(社會科學版),2007(2):2022.
吳創之,周肇秋,馬隆龍等.生物質發電技術分析比較[J].可再生能源,2008,26(3):3437.
吳傑,顧孟迪.可再生能源支持政策的國際比較及啟示[J].經濟縱橫,2006,8(11).4850.
吳俊恩.我國生物質能源發電產業發展狀況分析[J].石河子科技,2017(04):3334.
吳越人.生物質發電的春天[J].上海經濟,2010(12):2932.
武國慶.我國農作物秸稈能源化利用產業現狀與展望[J].生物產業技術,2015(02):715.
邢熙,鄭風田,崔海興.中國林木生物質能源:現狀、障礙及前景[J].林業經濟,2009(03):612.
閆慶友,陶傑.中國生物質發電產業效率評價[J].運籌與管理,2015,24(01):173178+208.
楊柏成,呂鐵彪,劉國喜.玉米秸稈氣化原料供應量與供應成本分析[J].農村能源,1998,(4):2021.
楊茂盛,李霞.改進重心法在物流配送中心選址中的應用[J].物流技術.2007,26(6):6062.
姚書傑,蒙丹.雲南省生物質能源產業發展問題研究[J].生態經濟評論,2013(00):7482.
於春燕,孟軍.基於AHP和模糊評判的生物質秸稈發電的效益評價[J].中國農學通報,2010,26(4):323327
於榮,朱喜安.我國經濟增長的碳排放約束機製探微[J].統計與決策,2009(13):99101.
翟明嶺,張旭,程飛,等.生物質發電中農戶秸稈供應成本敏感性分析[J].動力工程學報,2016,36(7):569574.
張蘭.中國林木生物質發電原料供應與產業化研究[D].北京:北京林業大學.2010.
張粒子,李才華,羅鑫.促進我國可再生能源電力發展的政策框架研究[J].中國電力,2006,39(4):8690.
張民,袁潔.國能威縣生物發電公司130t\/h生物質發電鍋爐給料係統改造[J].科技信息,2009,(05):725727.
張培遠.國內外秸稈發電的比較研究[D].鄭州:河南農業大學.2007.
張欽,周德群.江蘇省秸稈發電的現狀分析及對策[J].中國軟科學,2010(10):104111.
張鐵柱,李曙秋.生物質發電項目技術經濟分析[J].沈陽工程學院學報,2013,9(1):1113.
張維勝.國外生物質能可再生能源發展態勢分析[A].山西省人大財經委、山西省發改委、山西省國際電力公司、山西省沼氣協會、山西省能源研究會.可再生能源開發利用研討會論文集[C].山西省人大財經委、山西省發改委、山西省國際電力公司、山西省沼氣協會、山西省能源研究會:山西能源與節能雜誌社,2008:5.
張興然,徐相波.淺談生物質能發電[J].科技信息,2011(24):168.
章玲,方建鑫,周鵬.新能源發電績效評價研究綜述——基於多指標評價方法[J].技術經濟與管理研究,2014(1):38.
趙琳.秸稈電廠規劃選址方法研究[D].北京:華北電力大學.2012.
趙巧良.生物質發電發展現狀及前景[J].農村電氣化,2018(03):6063.
趙新剛,劉平闊.中國生物質發電產業發展動力因子研究[J].技術經濟,2012,31(08):8795.
趙英豪.山東省生物質資源評價與產業發展對策分析[D].山東大學,2013.
趙振宇,閆紅,令文君.我國生物質發電產業SWOT分析[J].可再生能源,2012,30(01):127132.
鍾歆怡.我國生物質能發電行業的法律製度研究[D].天津大學,2014.
周德群.從節能減排的高度綜合治理秸稈露天焚燒問題.國家社科基金成果要報,2010(31).
周新軍.國內外碳排放約束機製及減排政策[J].當代經濟管理,2013,35(5):3539.
朱四海.中國農村能源政策:回顧與展望[J].農業經濟問題,2007,(09):2025.
朱萬斌.201067.秸稈發電賬本的另一種算法.科學時報.
Afgan N.H., Carvalho M.G. Multicriteria assessment of new and renewable energy power plants [J]. Energy, 2002, 27(8): 739755.
Afgan N.H., Carvalho M.G., et al.Energy system assessment with sustainability indicators [J]. Energy Policy, 2000, 28(9): 603612.
Akash B.A., Mamlook R., Mohsen M.S. Multicriteria selection of electric power plants using analytical hierarchy process [J]. Electric Power Systems Research, 1999, 52(1):2935.
AlbaredaSambola M., Diaz J.A., Fernandez E. A compact model and tight bounds for a combinedlocationrouting problem [J]. Computers & Operations Research, 2005, 32(3): 407428.
Algieri A., Morrone P. Technoeconomic analysis of biomassfired ORC systems for singlefamily combined heat and power (CHP) applications [C]. 68th Conference of the Italian Thermal Machines Engineering Association, ATI2013. Energy Procedia, 2014(45): 12851294.
Andersen M S. An introductory note on the environmental economics of the circular economy[J]. Sustainability Science, 2007, 2(1): 133140.
Arndt H W. “Market failure” and underdevelopment[J]. World Development, 1988, 16(2): 219229.
Arostegui M.A., Kadipasaoglu S.N., Khumawala B.M. An empirical comparison of tabu search, simulated annealing, and genetic algorithms for facilities location problems [J]. International Journal of Production Economics, 2006, 103(2): 742754.
Asadullah M. Barriers of commercial power generation using biomass gasification gas: a review[J]. Renewable and Sustainable Energy Reviews, 2014(29): 201215.
Baldacci R., Hadjiconstantinou E., Maniezzo V. A new method for solving capacitated location problems based on a set partitioning approach [J]. Computers and Operations Research, 2002, 29(4): 365386.
Barceló J., Casanovas J. A heuristic lagrangean algorithm for the capacitated plant location problem [J]. European Journal of Operational Research, 1984, 15(2): 212226.
Barcelo J., Fernandez E., Jrnsten K.O. Computational results from a mew Lagrangean relaxation algorithm for the capacitated plant location problem [J]. European Journal of Oprational Research, 1991, 53(1): 3845.
Basu P., Butler J., Leon M.A. Biomass cofiring options on the emission reduction and electricity generation costs in coalfired power plants [J]. Renewable Energy, 2011, 36(1): 282288.
Baumol W J, Baumol W J, Oates W E, et al. The theory of environmental policy[M]. Cambridge university press, 1988.
Baumol W J. Macroeconomics of unbalanced growth: the anatomy of urban crisis[J]. The American economic review, 1967, 57(3): 415426.
Begic F., Afgan N.H.Sustainability assessment tool for the decision making in selection of energy system—Bosnian case [J]. Energy, 2007, 32(10): 19791985.
Beheshtifar S., Mohammad S.M., Veldan Z. Using fuzzy logic in gis environment for site selection of gas power plant [J]. Journal of civil and surveying engineering (journal of faculty of engineering), 2010, 44(4): 583595.
Birat J P. Lifecycle assessment, resource efficiency and recycling[J]. Metallurgical Research & Technology, 2015, 112(2): 206.
Bojic' S., Datkov D., Brcanov D., et al. Locatopm allocation of solid biomass power plants: Case study of Vojvodina [J]. Renewable and Sustainable Energy Reviews, 2013(26): 769775.
Bouchard S., Landry M., Gagnon Y. Methodology for thelarge scale assessment of the technical power potential of forest biomass: Application to the province of New Brunswick, Canada [J]. Biomass & Bioenergy, 2013(54): 117.
Brown B J, Hanson M E, Liverman D M, et al. Global sustainability: toward definition[J]. Environmental management, 1987, 11(6): 713719.
Buchholz T., Rametsteiner E., et al.Multi Criteria Analysis for bioenergy systems assessments [J]. Energy Policy, 2009, 37(2): 484495.
Campbell A.M., Lowe T.J., Zhang L. The phub center allocation problem [J].European Journal of Operational Research, 2007, 176(2): 819835.
Canos M.J., Ivorra C., Liem V. Exact algorithm for the fuzzy pmedian problem [J]. European Journal of Operational Research, 1999, 116(1): 8086.
Caputo A C, Palumbo M, Pelagagge P M, et al. Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables[J]. Biomass and Bioenergy, 2005, 28(1): 3551.
Chatzimouratidis A.I., Pilavachi P. A. Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process [J]. Energy Policy, 2009, 37(3): 778787.
Cherubini F, Peters G P, Berntsen T, et al. CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming[J]. Gcb Bioenergy, 2011, 3(5): 413426.
Cornuejols G., Sridharan R., Thizy J.M. A comparison of heuristics and relaxiations for the capacitated plant location problem [J]. European Journal of Operational Research, 1991, 50(3): 280297.
Cundiff J.S., Dias N., Sherali H.D. A linear programming approach for designinga herbaceous biomass delivery system [J]. Bioresource Technology, 1997, 59(1): 4755.
Dahlman C J. The problem of externality[J]. The journal of law and economics, 1979, 22(1): 141162.
Darskin M.S. A maximum expected covering location problem: Formulation, properties, and heuristic solution [J]. Transportation Science, 1983, 17(1): 4870.
Delivand M.K., Barz M., Gheewala S.H. Logistics cost analysis of rice straw for biomass power generation in Thailand [J]. Energy, 2011, 36(3):14351441.
Desrosiers J., Laporte G., Sauve M. et al. Vechle routing with full loads. Computers & Operations Research, 1988, 15(3): 219226.
Diakoulaki D., Karangelis F. Multicriteria decision analysis and costbenefit analysis of alternative scenarios for the power generation sector in Greece [J]. Renewable and Sustainable Energy Reviews, 2007, 11(4): 716727.
Doukas H.C., Andreas B.M., et al. Multicriteria decision aid for the formulation of sustainable technological energy priorities using linguistic variables [J]. European Journal of Operational Research, 2007, 182(2): 844855.
Downing P B, White L J. Innovation in pollution control[J]. Journal of environmental economics and management, 1986, 13(1): 1829.
Efroymson M.A., Ray T.L. A branchandbound algorithm for plant location [J]. Operations Research, 1996, 14(5): 361368.
Erlenkotter D. A dualbased procedure for uncapacitated facility location [J]. Operations Research, 1978, 26(1): 9921009.
Evans A, Strezov V, Evans T J. Sustainability considerations for electricity generation from biomass[J]. Renewable and sustainable energy reviews, 2010, 14(5): 14191427.
Evans A., Strezov V., et al. Assessment of sustainability indicators for renewable energy technologies [J]. Renewable and Sustainable Energy Reviews, 2009, 13(5):10821088.
Freppaz, D., et al. Optimizing forest biomass exploitation for energy supply at a regional level [J]. Biomass and Bioenergy, 2004, 26(1): 1525.
Fthenakis V., Kim H.C.Land use and electricity generation: A lifecycle analysis [J]. Renewable and Sustainable Energy Reviews, 2009, 13(6~7):14651474.
Gan J, Smith C T. A comparative analysis of woody biomass and coal for electricity generation under various CO2 emission reductions and taxes[J]. Biomass and Bioenergy, 2006, 30(4): 296303.
Georgopoulou E., Lalas D., et al.A Multicriteria Decision Aid approach for energy planning problems: The case of renewable energy option [J]. European Journal of Operational Research, 1997, 103(1): 3854.
Georgopoulou E., Saradis Y., et al.Design and implementation of a group DSS for sustaining renewable energies exploitation [J]. European Journal of Operational Research, 1998, 109(2): 483500.
Gladwin T N, Kennelly J J, Krause T S. Shifting paradigms for sustainable development: Implications for management theory and research[J]. Academy of management Review, 1995, 20(4): 874907.
Gough C, Upham P. Biomass energy with carbon capture and storage(BECCS or BioCCS)[J]. Greenhouse Gases Science & Technology, 2011, 1(4):324334.
Goumas M., Lygerou V. An extension of the PROMETHEE method for decision making in fuzzy environment: Ranking of alternative energy exploitation projects [J]. European Journal of Operational Research, 2000, 123(3): 606613.
Greistorfer P., Rego C. A simple filterandfan approach to the facility location problem [J]. Computers & Operations Research, 2006, 33(9): 25902601.
Grobelny J. The fuzzy approach to facilities layout problems [J]. Fuzzt Sets and Systems, 1987, 23(2): 175190.
Gungor Z., Arikan F.A fuzzy outranking method in energy policy planning [J]. Fuzzy Sets and Systems, 2000, 114(1): 115122.
Guo Z., Hodges D. Woody Biomass Policies and Location Decisions of the Bioenergy Industry in the Southern United States [C]. in Proceedings of the 2010 Southern Forest Economics Workshop: 5969.
Hakimi S.L. Optium Locations of switching centers and the absolute centers and medians of a graph [J]. Operations Research, 1964, 12(1): 450459.
Haralambopoulos D.A., Polatidis H.Renewable energy projects: structuring a multicriteria group decisionmaking framework [J]. Renewable Energy, 2003, 28(6): 961973.
Henao F., Cherni J.A., et al.A multicriteria approach to sustainable energy supply for the rural poor [J]. European Journal of Operational Research, 2012, 218(3): 801809.
Hess D J, Mai Q D, Brown K P. Red states, green laws: Ideology and renewable energy legislation in the United States[J]. Energy Research & Social Science, 2016(11): 1928.
Hoffmann B.S., Szklo A., Schaeffer R. An evaluation of the technoeconomic potential ofcofiring coal with woody biomass in thermal power plants in the south of Brazil [J]. Biomass & Bioenergy, 2012(45): 295302.
Hhn J., Lehtonen E., Rasi S., et al. A Geographical Information System (GIS) based methodology for determination of potential biomass and sites for biogas plants in southern Finland [J]. Applied Energy, 2014(113): 110.
Hotelling H. Stability in competition [J]. Economic Journal, 1929, 39(1): 4157.
Huang Y., McllveenWright D.R., Rezvani S., et al. Comparative technoeconomic analysis of biomass fuelled combined heat and power for commercial buildings [J]. Applied Energy. 2013(112): 518525.
Hughes E. Biomass cofiring: economics, policy and opportunities[J]. Biomass and Bioenergy, 2000, 19(6): 457465.
International Energy Agency (IEA). World Energy Outlook 2013—Chapter 6: Renewable Energy Outlook. 2013.
International Energy Agency (IEA). World Energy Outlook 2018. 2018.
International Institute for Management Development (IMD). World competitiveness yearbook 2014; 2014.
Jaffe, A B, et al. Environmental regulation and the competitiveness of US manufacturing: what does the evidence tell us? [J]. Journal of Economic literature, 1995, 33 (1): 132163.
Jaffee A B, Stavins R N. Dynamic Incentives of Environmental Regulations: The Effects of Alternative Instruments on Technology Diffusion, 29 J[J]. Envtl. Econ. & Mgmt. S43, S44, 1995.
JeanFrancois V.B., Temmerman M., Schenkel Y. Three level procurement of forest residues for power plant [J]. Biomass and Bioenergy, 2003, 24(4~5): 401409.
Jeppesen, T., Folmer H. The confusing relationship between environmental policy and location behaviour of firms: A methodological review of selected case studies [J]. The Annals of Regional Science, 2001, 35(4): 523546.
Jiang, D, Zhuang D, Fu J, et al. Bioenergy potential from crop residues in China: Availability and distribution[J]. Renewable & Sustainable Energy Reviews, 2012, 16(3):13771382.
Jiuchen W, Lin D, Yishui T, et al. Analysis of the development status and trends of biomass energy industry in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 2007(9).
Jovanovic M., Afgan N., et al.Sustainable development of the Belgrade energy system [J]. Energy, 2009, 34(5):532539.
Kablan M.M. Decision support for energy conversion promotion: an analytic hierarchy process approach [J]. Energy Policy, 2004, 32(10): 11511158.
Kariv O., Hakimi S. An Algorithmic Approach to Network Location Problems 2: The pMedians [J]. SIAM Journal on Applied Mathematics, 1979, 37(3): 539560.
Kaundinya D P, Balachandra P, Ravindranath N H, et al. A GIS (geographical information system)based spatial data mining approach for optimal location and capacity planning of distributed biomass power generation facilities: A case study of Tumkur district, India[J]. Energy, 2013, 52: 7788.
Kaya T., Kahraman C.Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul [J]. Energy, 2010, 35(6): 25172527.
KellyYong T L, Lee K T, Mohamed A R, et al. Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide[J]. Energy Policy, 2007, 35(11):56925701.
Klass D L. Biomass for renewable energy, fuels, andchemicals.[J]. 1998, 29(12):10281037.
Klose A. A Lagrangean relaxandcut approach for the twostage capacitated facility location problem [J]. European Journal of Operational Research, 2000, 126(2): 408421.
Klose A., Gortz S. A branchandprice algorithm for the capacitated facility location problem [J]. European Journal of Operational Research, 2007, 179(3): 11091125.
Kneese A V, Schultz C L. Pollution, prices and public policy (The Brookings Institute, Washington,DC)[J]. Clean Energy Systems and Experiences, 1975, 178.
Kocoloski M., Griffin W.M., Matthews H.S.Impacts of facility size and location decisions on ethanol production cost [J]. Energy Policy, 2011, 39(1):4576.
Kongsamut P, Rebelo S, Xie D. Beyond balanced growth[J]. The Review of Economic Studies, 2001, 68(4): 869882.
Knig A. Cost efficient utilisation of biomass in the German energy system in the context of energy and environmental policies[J]. Energy Policy, 2011, 39(2):628636.
Krukanont P, Prasertsan S. Geographical distribution of biomass and potential sites of rubber wood fired power plants in Southern Thailand[J]. Biomass and bioenergy, 2004, 26(1): 4759.
Kumar A, Kumar N, Baredar P, et al. A review on biomass energy resources, potential, conversionand policy in India[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 530539.
Kwon P S, stergaard P A. Priority order in using biomass resourcesEnergy systems analyses of future scenarios for Denmark[J]. Energy, 2013, 63(1):8694.
Lauber, Volkmar|Mez, Lutz. Renewable Electricity Policy in Germany, 1974 to2005.[J]. Bulletin of Science Technology & Society, 2006, 26(2):105120.
Leduc S., Schwab D., Dotzauer E., et al. Optimal location of wood gasification plants for methanol production with heat recovery [J]. International Journal of Energy Research, 2008, 32: 10801091.
Lee U., Balu E., Chung J.N. An expenrimental evaluation of an integrated biomass gasification and power generation system for distributed power applications [J]. Applied Energy, 2013(101): 699708.
Leemans R, Amstel A V, Battjes C, et al. The land cover and carbon cycle consequences of largescale utilizations of biomass as an energy source [J]. Global Environmental Change, 1996, 6(4):335357.
Lehr U., Nitsch J., et al.Renewable energy and employment in Germany [J]. Energy Policy, 2008, 36(1):108117.
Levinson A. Environmental regulations and manufacturers location choices: Evidence from the Census of Manufactures[J]. Journal of Public Economics, 1996, 62(1~2): 529.
Lewandowski M. Designing the business models for circular economy—Towards the conceptual framework[J]. Sustainability, 2016, 8(1): 43.
Li Y. Feed processing techniques of stalks of agricultural crops[M]. Beijing: China Light Industry Press; 2006.
Lieder M, Rashid A. Towards circular economy implementation: a comprehensive review in context of manufacturing industry[J]. Journal of Cleaner production, 2016, 115: 3651.
Lim J S, Manan Z A, Alwi S R W, et al. A review on utilisation of biomass from rice industry as a source of renewable energy[J]. Renewable and sustainable energy reviews, 2012, 16(5): 30843094.
Lin B, He J. Is biomass power a good choice for governments inChina?[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 12181230.
Liposcaka M., Afgan N.H., et al.Sustainability assessment of cogeneration sector development in Croatia [J]. Energy, 2006, 31(13): 22762284.
List J.A., Co C.Y. The effects of environmental regulations on foreign direct investment [J].Journal of Environmental Economics and Management, 2000, 40(1): 120.
Liu H.T., Polenske K.R., Xi Y.M., Guo J.E. Comprehensive evaluation of effects of strawbased electricity generation: A Chinese case [J]. Energy Policy, 2010, 38 (10): 61536160.
Liu J.C., Wang S.J., Wei Q.S., et al. Present situation, problems and solutions of Chinas biomass power generation industry [J]. Energy Policy, 2014(70): 144151.
Lken E. Use of multicriteria decision analysis methods for energy planning problems [J]. Renewable and Sustainable Energy Reviews, 2007, 11(7): 15841595.
Lken E., Botterud A., Holen A. Use of the equivalent attribute technique in multicriteria planning of local energy systems [J]. European Journal of Operational Research, 2009, 197(3): 10751083.
Luckow P, Wise M A, Dooley J J, et al. Largescale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2 concentration limit scenarios[J]. International Journal of Greenhouse Gas Control, 2010, 4(5): 865877.
Lynd,LR , Elamder R.T., Wyman C.E. Likely features and costs of mature biomass ethanol technology. Applied Biochemistry and Biotechnology, 1996, 5758(1): 741761.
Madlener R. How to Maintain Competition and Diversity? A socioecologicaleconomic assessment of bioenergy options with a focus on CHP. Socioeconomic aspects of bioenergy systems: Challenges and opportunities, 2001.
Malerba F. Public policy and industrial dynamics: an evolutionary perspective[J]. European Commission, 1996.
Mamlook R., Akash B.A., et al. A neurofuzzy program approach for evaluating electric power generation systems [J]. Energy, 2001, 26(6): 619632.
Maraver D., Sin A., Sebastián F., et al. Environmental assessment of CCHP (combined cooling heating and power) systems based on biomass combustion in comparison to conventional generation [J]. Energy, 2013, 57:1723.
Marianov V., Revelle C. The queuing Probabilistic location set covering prolem and some extensions [J]. SocioEconomic Planning Sciences, 1994, 28(3): 167178.
Mccormick K. An Overview of Distributed Energy in the EU and USA: Business Intelligence and Policy Instruments [J]. 2008.
McllveenWright D.R., Huang Y., Rezvani S., et al. A technical and economic analysis of three large scale biomass combustion plants in the UK [J]. Applied Energy, 2013, 112: 396404.
Mitchell C. Development of decision support systems for bioenergy applications [J]. Biomass and Bioenergy, 2000, 18(4): 265278.
Mohammad A. Biomass gasification gas cleaning for downstream applications: A comparative critical review [J]. Renewable and Sustainable Energy Reviews, 2014(40): 118132.
Mohsen M.S., Akash B.A. Evaluation of domestic solar water heating system in Jordan using analytic hierarchy process [J]. Energy Conversation and management, 1997, 38(18): 18151822.
Moiseyev A, Solberg B, Kallio A M I. The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU[J]. Energy, 2014, 76: 161167.
Mllersten K, Yan J, Moreira J R. Potential market niches for biomass energy with CO2 capture and storage—Opportunities for energy supply with negative CO2 emissions[J]. Biomass and Bioenergy, 2003, 25(3): 273285.
Moreno B., Jesus L.A.The effect of renewable energy on employment. The case of Asturias (Spain) [J]. Renewable and Sustainable Energy Reviews, 2008, 12(3): 732751.
Murray A, Skene K, Haynes K. The circular economy: An interdisciplinary exploration of the concept and application in a global context[J]. Journal of Business Ethics, 2017, 140(3): 369380.
Nagel J. Determination of an economic energy supply structure based on biomass using a mixedinteger linear optimization model [J]. Ecological Engineering, 2000, 16(s1): 91102.
Nasiri F., Zaccour G. An exploratory gametheoretic analysis of biomass electricity generation supply chain [J]. Energy Policy, 2009, 37(11): 45144522.
Ness D. Sustainable urban infrastructure in China: Towards a Factor 10 improvement in resource productivity through integrated infrastructure systems[J]. The International Journal of Sustainable Development & World Ecology, 2008, 15(4): 288301.
Ngai L R, Pissarides C A. Structural change in a multisector model of growth[J]. American economic review, 2007, 97(1): 429443.
Nilsson D. SHAM—a simulation model for designing straw fuel delivery systems. Part 1: model description [J]. Biomass and Bioenergy, 1999, 16(1): 2538.
OECD. Technology and the economy: The key relationships. Paris; 1992
Osmani A, Zhang J. Optimal grid design and logistic planning for wind and biomass based renewable electricity supply chains under uncertainties[J]. Energy, 2014, 70: 514528.
stergaard P.A.Reviewing optimization criteria for energy systems analyses of renewable energy integration [J]. Energy, 2009, 34(9): 12361245.
Owen A.D. Renewable energy: Externality costs as market barriers [J]. Energy Policy, 2006, 34(5): 632642.
Ozturk M, Saba N, Altay V, et al. Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia[J]. Renewable and Sustainable Energy Reviews, 2017(79): 128513
Papadopoulos A., Karagiannidis A.Application of the multicriteria analysis method Electre III for the optimization of decentralized energy systems [J]. Omega, 2008, 36(5): 766776.
Papadopoulos D., Katsigiannis P. Biomass energy surveying and technoeconomic assessment of suitable CHP system installations [J]. Biomass and Bioenergy, 2002, 22(2): 105124.
Perl J., Daskin M.S. A warehouse locationrouting problem. Transportation Research Part B: Methodological, 1985, 19(5): 381396.
Pigou A. The economics of welfare[M]. Routledge, 2017.
Pilavachi P.A., Roumpeas C.P., et al. Multicriteria evaluation for CHP system options [J]. Energy Conversion and Management, 2006, 47(20): 35193529.
Pohekar S.D, Ramachandran M. Application of multicriteria decision making to sustainable energy planning—A review [J]. Renewable and Sustainable Energy Reviews, 2004, 8(4): 365381.
REN21. Renewables Global Status Report[R]. 2018
Rentizelas A.A., Tolis A.J., Tatsiopoulos I.P. Logistics issues of biomass: The storage problem and the multibiomass supply chain [J]. Renewable & Sustainable Energy Reviews, 2009, 13(4): 887894.
Revelle C.S., HoganK.. The maximum availability location problem [J]. Transportation Science, 1989, 23(3): 192200.
Rickerson W, Grace R C. The Debate over Fixed Price Incentives for Renewable Electricity in Europe and the United States: Fallout and Future Directions[J]. 2007.
Rogers J.G., BrammerJ.G.. Analysis of transport costs for energy crops for use in biomass pyrolysis plant networks [J]. Biomass & Bioenergy, 2009, 33(10): 13671375.
Rsch C, Jrissen J, Skarka J, et al. Strategies to Reduce Land Use Competition and Increasing the Share of Biomass in the German Energy Supply[C]\/\/ European Biomass Conference. 2010.
Ruiz J.A., Juárez M.C., Morales M.P., et al. Biomass logistics: Financial & environmental costs. Case study: 2MW electrical power plants [J]. Biomass & Bioenergy, 2013, 56: 260267.
Sansaniwal S K, Rosen M A, Tyagi S K. Global challenges in the sustainable development of biomass gasification: An overview[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 2343.
Santillo D. Reclaiming the Definition of Sustainability (7pp)[J]. Environmental Science and Pollution ResearchInternational, 2007, 14(1): 6066.
Schmidt J, Leduc S, Dotzauer E, et al. Costeffective CO2 emission reduction through heat, power and biofuel production from woody biomass: A spatially explicit comparison of conversion technologies[J]. Applied Energy, 2010, 87(7): 21282141.
Schmidt J, Leduc S, Dotzauer E, et al. Potential of biomassfired combined heat and power plants considering the spatial distribution of biomass supply and heat demand[J]. International Journal of Energy Research, 2010, 34(11): 970985.
Schneider U A, McCarl B A. Economic potential ofbiomass based fuels for greenhouse gas emission mitigation[J]. Environmental and resource economics, 2003, 24(4): 291312.
Sebastián F, Royo J, Gómez M. Cofiring versus biomassfired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology[J]. Energy, 2011, 36(4): 20292037.
Sha H, Tong S, Zhang W, Zhai N, Wang X, Huang C, et al. Analysis on current situation of producing and comprehensive utilization of stalks of agricultural crops[J]. J Jilin Agri Sci 2010(4): 515.
Shabani N., Sowlati T. A mixed integer nonlinear programming model for tactical value chain optimization of a wood biomass power plant [J]. Applied Energy, 2013(104): 353361.
Shaffer E C, Massie D D, Cross J B. Power and Energy Architecture for Army Advanced Energy Initiative[J]. Power & Energy Architecture for Army Advanced Energy Initiative, 2006.
Shavandi H., Mahlooji H. A fuzzy queuing location model with genetic algorithm for congested systems [J]. Applied Mathematics and Computation, 2006, 181(1): 440456.
Shavandi H., Mahlooji H. Fuzzy queueing locationallocation models for congested systems [J]. International Journal of Industrial Engineering, 2004, 11(4): 364376.
Shavandi H., Mahlooji H., et. al. A fuzzy conherent hierarchical locationallocation model foe congested systems [J]. Scientia Iranica, 2006, 13(1): 1424.
Shen Z. J. M., Coullard C., Daskin M.S. A joint locationinventory model [J]. Transportation Science, 2003, 37(1): 4055
Shi X, Elmore A, Li X, et al. Using spatial information technologies to select sites for biomass power plants: A case study in Guangdong Province, China[J]. Biomass and Bioenergy, 2008, 32(1): 3543.
Shobrys D. A model for the selection of shipping routes and strange locations for a hazardous substance [D]. Baltimore: Johns Hopkins University. 1981.
Siudek T, Zawojska A. Competitiveness in the economic concepts, theories and empirical research[J]. Acta Scientiarum Polonorum. Oeconomia, 2014, 13(1).
Smith K. Innovation as a systemic phenomenon: rethinking the role of policy[J]. Enterprise and innovation management studies, 2000, 1(1): 73102.
Sokhansanj S, Kumar A, Turhollow A F. Development and implementation of integrated biomass supply analysis and logistics model (IBSAL)[J]. Biomass and Bioenergy, 2006, 30(10): 838847.
Sorda G, Banse M, Kemfert C. An overview of biofuel policies across the world[J]. Energy Policy, 2010, 38(11):69776988.
Sperling D. An analytical framework for siting and sizing biomass fuel plants [J]. Energy, 1984, 9(12): 10331040.
Sridharan R. A Lagrangian heuristic for the capacitated plant location problem with single source constraints [J]. European Journal of Operational Research, 1993, 66(3): 305312.
Stahel W R. Reuse is the key to the circular economy[J]. European Commission Available at. http:\/\/ec. europa. eu\/environment\/ecoap\/aboutecoinnovation\/expertsinterviews\/reuseisthekeytothecirculareconomy_en, 2014.
Statistical Report for the Construction of Biomass Power Gen eration in China
Stewatt T.J., French S., Rios J. Integrating multicriteria decision analysis and scenario planningReview and extension[J]. Omega, 2013, 41: 679688.
treimikiene· D., Puinaite· R.External Cost of Electricity Generation in Lithuania [J]. Environmental Research, 2008, 2(44):3440.
Streimikienea D., Balezentis T., et al. Prioritizing sustainable electricity production technologies: MCDM approach [J]. Renewable and Sustainable Energy Reviews, 2012, 16(5):33023311.
Sun C., Zhang D. Forest resources, government policy, and investment location decisions of the forest products industry in the southern United States [J]. Forest science, 2001, 47(2): 169177.
Suramaythangkoor T., Gheewala S.H. Potential of practical implementation of rice strawbased power generation in Thailand [J]. Energy Policy, 2008, 36(8): 31933197
Tatsiopoulos I., Tolis A. Economic aspects of the cottonstalk biomass logistics and comparison of supply chain methods [J]. Biomass and Bioenergy, 2003, 24(3): 199214.
Thakur A., Canter C.E., KumarA.. Lifecycle energy and emission analysis of power generation from forest biomass[J]. Applied Energy, 2014(128): 246253.
Thomas A., Bond A., Hiscock K. A GIS based assessment of bioenergy potential in England within existing energy systems [J]. Biomass and Bioenergy, 2013(55): 107121.
Thornley P. Increasingbiomass based power generation in the UK[J]. Energy Policy, 2006, 34(15): 20872099.
Tsakomakas N.G., Pilavachi P.A., Polyzakis A.L. An economic comparison assessment of lignite and biomass IGCC power plants [J]. Applied Thermal Engineering, 2012(38): 2630.
Tsoutsos T., Drandaki M., et al.Sustainable energy planning by using multicriteria analysis application in the island of Crete [J]. Energy Policy, 2009, 37(5): 15871600.
Upadhyay T.P., Shahi C., Leitch M., et al. Economic feasibility of biomass gasification for power generation in three selected communities of northwestern Ontario, Canada [J]. Energy Policy, 2012(44): 235244.
Vera D., et al. A Honey Bee Foraging approach for optimal location of a biomass power plant [J]. Applied Energy, 2010, 87(7): 21192127.
Vera V., Langlois L. Energy indicators for sustainable development [J]. Energy, 2007, 32(6): 875882.
Voivontas D, Assimacopoulos D, Koukios E G. Aessessment of biomass potential for power production: a GIS based method[J]. Biomass and bioenergy, 2001, 20(2): 101112.
Voropai N.I., Ivanova E.Y. Multicriteria decision analysis techniques in electric power system expansion planning [J]. International Journal of Electrical Power & Energy Systems, 2002, 24(1): 7178.
Wang C, Yuan C, Zhang L, et al. Quantifying uncertainties in greenhouse gas accounting of biomass power generation in China: System boundary and parameters[J]. Energy, 2018(158): 121127.
Wang J.J., Jing Y.Y., et al. A fuzzy multicriteria decisionmaking model for trigeneration system [J]. Energy Policy, 2008, 36(10): 38233832.
Wang J.J., Jing Y.Y., et al.Integrated evaluation of distributed triplegeneration systems using improved grey incidence approach [J]. Energy, 2008, 33(9): 14271437.
Wang J.J., Jing Y.Y., et al. Weighting methodologies in multicriteria evaluations of combined heat and power systems [J]. International Journal of Energy Research, 2009, 33(12): 10231039.
Wang W, Ouyang W, Hao F. A supplychain analysis framework for assessing densified biomass solid fuel utilization policies in China[J]. Energies, 2015, 8(7): 71227139.
Wang X, et al. Evaluating Chinas biomass power production investment based on a policy benefit real options model [J]. Energy, 2014(73): 751761.
Wei M., Patadia S., et al.Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US? [J]. Energy Policy, 2010, 38(2): 919931.
Weimer D L, Vining A R. Policy analysis: Concepts and practice[M]. Routledge, 2017.
Welfle A, Gilbert P, Thornley P. Increasing biomass resource availability through supply chain analysis[J]. biomass and bioenergy, 2014(70): 249266.
Woddyatt L.R., Stott K.L., Wolf F.E., et sl. An application combining set covering and fuzzy sets to optimally assign metallurgical grades to customer orders [J]. Fuzzy Sets and Systems, 1993, 53(1): 1526.
Wolf Jr C. A theory of nonmarket failure: Framework for implementation analysis[J]. The Journal of Law and Economics, 1979, 22(1): 107139.
World Economic Forum (WEF). Global competitiveness report 2014—2015. Geneva; 2014.
World Energy Council (WEC). World Energy Resources (2013 survey). 2013.
Wright D.G., Dey P.K., Brammer J. A barrier and technoeconomic analysis of smallscaleb CHP(biomass combined heat and power) schemes in the UK [J]. Energy, 2014(71): 332345.
Wu L.Y., Zhang X.S., Zhang J.L. Capacitated facility location problem with general setup cost [J]. Computers and Operations Research, 2006, 33(5): 12261241.
Xingang Z, Jieyu W, Xiaomeng L, et al. Focus on situation and policies for biomass power generation in China[J]. Renewable and Sustainable Energy Reviews, 2012, 16(6): 37223729.
Xingang Z, Zhongfu T, Pingkuo L. Development goal of 30 GW for Chinas biomass power generation: Will it beachieved?[J]. Renewable and Sustainable Energy Reviews, 2013(25): 310317.
Yagˇiz . A heuristic preprocessor supported algorithm for the capacitated plant location problem [J]. Applied Mathematical Modelling, 1991, 15(3): 114125.
Yoshida Y, Dowaki K, Matsumura Y, et al. Comprehensive comparison of efficiency and CO2 emissions between biomass energy conversion technologies—position of supercritical water gasification in biomass technologies[J]. Biomass and Bioenergy, 2003, 25(3): 257272.
Young, T M, et al. Logistic regression models of factors influencing the location of bioenergy and biofuels plants [J]. BioResources, 2011, 6(1): 329343.
Young, T.M, et al. The economic availability of woody biomass for the Southeastern United States [J]. Bioresource Technology, 1991, 37(1): 715.
Yozui S, Liyun X, Weiging Z. Development of stirling technology in China and its prospective role in solving the energy problem in developing rural areas[J]. Proc. Intersoc. Energy Convers. Eng. Conf.;(United States), 1984(2).
Yuzhuo Z, Xingang Z, Lingzhi R, et al. The development of Chinas biomass power industry under feedin tariff and renewable portfolio standard: A system dynamics analysis[J]. Energy, 2017(139): 947961.
Zhang Q, Zhou D, Fang X. Analysis on the policies of biomass power generation in China[J]. Renewable and Sustainable Energy Reviews, 2014(32): 926935.
Zhang Q, Zhou D, Zhou P, et al. Cost Analysis of strawbased power generation in Jiangsu Province, China[J]. Applied Energy, 2013, 102(2): 785793.
Zhijun F, Nailing Y. Putting a circular economy into practice in China[J]. Sustainability Science, 2007, 2(1): 95101.
Zhou P., Ang B.W., Poh K.L. Decision analysis in energy and environmental modeling: An update[J]. Energy, 2006, 31(14): 26042622.