f(x) = 0,則f(x)是奇函數.

注意:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 .

9、函數的解析表達式

(1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關係時,一是要求出它們之間的對應法則,二是要求出函數的定義域.

(2)求函數的解析式的主要方法有:

1) 湊配法

2) 待定係數法

3) 換元法

4) 消參法

10.函數最大(小)值(定義見課本p36頁)

○1 利用二次函數的性質(配方法)求函數的最大(小)值

○2 利用圖象求函數的最大(小)值

○3 利用函數單調性的判斷函數的最大(小)值:

如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);

如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

例題:

1.求下列函數的定義域:

⑴ ⑵

2.設函數的定義域為,則函數的定義域為_ _

3.若函數的定義域為,則函數的定義域是

4.函數 ,若,則=

5.求下列函數的值域:

⑴ ⑵

(3) (4)

6.已知函數,求函數,的解析式

7.已知函數滿足,則= 。

8.設是R上的奇函數,且當時,,則當時=

在R上的解析式為

9.求下列函數的單調區間:

⑴ ⑵ ⑶

10.判斷函數的單調性並證明你的結論.

11.設函數判斷它的奇偶性並且求證:.

第二章 基本初等函數

一、指數函數

(一)指數與指數冪的運算

1.根式的概念:一般地,如果,那麼叫做的次方根,其中>1,且∈*.

* 負數沒有偶次方根;0的任何次方根都是0,記作。

當是奇數時,,當是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

* 0的正分數指數冪等於0,0的負分數指數冪沒有意義

3.實數指數冪的運算性質

(1)· ;

(2) ;

(3) .

(二)指數函數及其性質

1、指數函數的概念:一般地,函數叫做指數函數,其中x是自變量,函數的定義域為R.

注意:指數函數的底數的取值範圍,底數不能是負數、零和1.

2、指數函數的圖象和性質

a>10

注意:利用函數的單調性,結合圖象還可以看出:

(1)在[a,b]上,值域是或;

(2)若,則;取遍所有正數當且僅當;

(3)對於指數函數,總有;

二、對數函數

(一)對數

1.對數的概念:一般地,如果,那麼數叫做以為底的對數,記作:(— 底數,— 真數,— 對數式)

說明:○1 注意底數的限製,且;

○2 ;

○3 注意對數的書寫格式.